已知函數(shù)f(x)=
2x-1
(x∈[2,6])
(1)判斷函數(shù)的單調(diào)性并證明你的結(jié)論;
(2)求函數(shù)的最大值和最小值.
分析:(1)可得函數(shù)為減函數(shù),由定義法可證;
(2)由單調(diào)性可知,x=2時(shí)取得最大值,x=6時(shí)取得最小值,代值計(jì)算即可.
解答:解:(1)f(x)=
2
x-1
在[2,6]上是減函數(shù)--------(2分)
下面證明:設(shè)x1,x2是區(qū)間[2,6]上的任意兩個(gè)實(shí)數(shù),且x1<x2,---------(3分)
則f(x1)-f(x2)=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
---(5分)
由2≤x1<x2≤6 得x2-x1>0 (x1-1)(x2-1)>0
∴f(x1)-f(x2)>0 即 f(x1)>f(x2)-------------(7分)
∴f(x)=
2
x-1
在[2,6]上是減函數(shù)--------------(8分)
(2)∵f(x)=
2
x-1
在[2,6]上是減函數(shù)
∴f(x)=
2
x-1
在x=2時(shí)取得最大值,最大值是2--------(10分)
在x=6時(shí)取得最小值,最小值是0.4----------(12分)
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷和證明,以及函數(shù)最值得求解,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案