若m和n滿足mn=1,則3m+n的最小值是( 。
分析:由m>0,mn=1,可得n=
1
m
.代入3m+n=3m+
1
m
,再利用基本不等式的性質(zhì)即可.
解答:解:∵m>0,mn=1,∴n=
1
m

則3m+n=3m+
1
m
≥2
3m•
1
m
=2
3
,當且僅當m=
3
3
時取等號,
∴3m+n的最小值是2
3

故選B.
點評:變形代入利用基本不等式的性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:2
OP
=
OM
+
ON
(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省大連市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

若m和n滿足mn=1,則3m+n的最小值是( )
A.2
B.2
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年河北省邢臺市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年上海市徐匯區(qū)高三(下)4月聯(lián)考數(shù)學試卷(解析版) 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案