精英家教網 > 高中數學 > 題目詳情

選修4-1:幾何證明選講

如圖,在等腰梯形ABCD中,對角線AC⊥BD,且相交于點O ,E是AB邊的中點,EO的延長線交CD于F.

(1)求證:EF⊥CD;

(2)若∠ABD=30°,求證

 

【答案】

(1)先證明△AOB≌△DOC, 從而得出∠ODC=∠OAB,進而可以證明結論;

(2)先證明△DOC∽△DFO,利用面積比等于相似比的平方比即可證明.

【解析】

試題分析:(1)∵ △AOB為直角三角形,且E 為AB邊的中點,

∴EO="EA=EB," ∴∠EAO=∠EOA, ∠EOB=∠EBO,

又△AOB≌△DOC, ∴∠ODC=∠OAB,

∠EOB=∠DOF(對頂角),∴∠ODC+∠DOF=90°

∴∠DFO=90°

∴EF⊥CD

(2)∵∠ABD=30°∴∠EOB=∠DOF=30°,

∴在Rt△DOF中,DF=OD,△DOC∽△DFO,

所以根據面積比等于相似比的平方比,知

考點:本小題主要考查兩條直線垂直、三角形相似等的證明.

點評:在利用相似三角形解答時,注意通過對應邊找對應角,通過對應角找對應邊,不要找錯了。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案