已知函數(shù)f(n)=logn+1(n+2),(n∈N*),定義:使f(1)×f(2)×f(3)×…×f(k)為整數(shù)的數(shù)k(k∈N*)叫作企盼數(shù),則在區(qū)間[1,1000]內(nèi)這樣的企盼數(shù)共有( 。﹤(gè).
A、7B、8C、9D、10
分析:由已知中函數(shù)f(n)=logn+1(n+2)(n∈N*),利用對數(shù)運(yùn)算的性質(zhì)易得f(1)•f(2)…f(k)=log2(k+2),若其值為整數(shù),則k+2=2n(n∈Z),結(jié)合k∈[1,1000],我們易得到滿足條件的數(shù)的個(gè)數(shù).
解答:解:∵函數(shù)f(n)=logn+1(n+2)(n∈N*),
∴f(1)=log23,
f(2)=log34,

f(k)=logk+1(k+2).
∴f(1)•f(2)…f(k)=log23•log34•…•logk+1(k+2)=log2(k+2).
若f(1)•f(2)…f(k)為整數(shù),
則k+2=2n(n∈Z),
又∵k∈[1,1000],
故k∈{2,6,14,30,62,126,254,510}.
∴在區(qū)間[1,1000]內(nèi)這樣的企盼數(shù)共有8個(gè).
故選:B.
點(diǎn)評:本題考查了對數(shù)的運(yùn)算性質(zhì),是新定義題,解答此題的關(guān)鍵是利用對數(shù)的換底公式轉(zhuǎn)化,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xn,其中n∈Z,n≥2.曲線y=f(x)在點(diǎn)P(x0,f(x0))(x0>0)處的切線為l,l與x軸交于點(diǎn)Q,與y軸交于點(diǎn)R,則
|PQ|
|PR|
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),給出兩類直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出相應(yīng)的m或n的值,若不存在,說明理由.
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對稱點(diǎn)”,若存在,請至少求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個(gè)數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,f(0))處的切線L與直線x-y+3=0平行,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2013的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2013的值為( 。

查看答案和解析>>

同步練習(xí)冊答案