【題目】如圖,在四棱錐中,底面為直角梯形,其中∥,是的中點,和交于點,且平面.
(1)證明:平面平面;
(2)求直線與平面所成角的大。
【答案】(1)見解析(2)
【解析】
(1)由已知證明四邊形是平行四邊形,進一步證得四邊形為正方形,得,求解三角形證明,由線面垂直的判定可得平面,得到,再由直線與平面垂直的判定可得平面,從而得到平面平面;
(2)由于兩兩垂直,故以為原點,的方向為軸的正方向建立空間直角坐標(biāo)系,然后求出平面的法向量,再利用向量的夾角公式可求得結(jié)果.
(1)因為是的中點,所以四邊形是平行四邊形,又因為,所以四邊形是正方形,所以;
又因為,所以,
又因為,所以,故
因為平面平面,所以;
又因為平面
所以平面
因為平面,所以平面平面.
(2)由(1)知兩兩垂直,故以為原點,的方向為軸的正方向建立空間直角坐標(biāo)系,
由(1)知四棱錐為正四棱錐,故,所以為等腰直角三角形,故,則,
所以
設(shè)平面的法向量為,由,得
,即,令,則,
設(shè)直線與平面所成角為,
那么,
因為,所以,
所以直線與平面所成角.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ex﹣2,x>0.
(1)求函數(shù)y=f(x)的圖象在點x=2處的切線方程;
(2)求證:f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若在上恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,求函數(shù)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.
(1)求證:平面平面;
(2)若,,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)設(shè)曲線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,,, ,為的中點.
(1)平面平面
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲線圖是2020年1月25日至2020年2月12日陜西省及西安市新冠肺炎累計確診病例的曲線圖,則下列判斷正確的是( )
A.1月31日陜西省新冠肺炎累計確診病例中西安市占比超過了
B.1月25日至2月12日陜西省及西安市新冠肺炎累計確診病例都呈遞增趨勢
C.2月2日后到2月10日陜西省新冠肺炎累計確診病例增加了97例
D.2月8日到2月10日西安市新冠肺炎累計確診病例的增長率大于2月6日到2月8日的增長率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com