設(shè)直線l經(jīng)過點(diǎn)P(2,1),且A(0,4)、B(4,8)兩點(diǎn)到直線l的距離相等,則直線l的方程是( 。
A、x-y-1=0
B、x-y-1=0或x-y-4=0
C、x+y-3=0
D、x-y-1=0或x=2
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:對(duì)直線l的斜率分類討論,再利用斜率計(jì)算公式和點(diǎn)斜式即可得出.
解答: 解:當(dāng)直線l的斜率不存在時(shí),直線l的方程為:x=2,此時(shí)A(0,4)、B(4,8)兩點(diǎn)到直線l的距離相等,因此x=2滿足條件;
當(dāng)直線l的斜率存在時(shí),則kl=kAB=
8-4
4-0
=1,
∴直線l的方程為:y-1=1×(x-2),化為x-y-1=0.
綜上可得直線l的方程為:x-y-1=0或x=2.
故選:D.
點(diǎn)評(píng):本題考查了分類討論、斜率計(jì)算公式和點(diǎn)斜式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列函數(shù)中,最小值為2的是( 。
A、y=x+
1
x
B、y=sinx+
1
sinx
(0<x<
π
2
C、y=lgx+
1
lgx
(1<x<10)
D、y=3x+3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則a-b=0⇒a=b”類比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
⇒a=c,b=d”;
③“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,則a-b>0⇒a>b”;
其中類比結(jié)論正確的命題是( 。
A、①B、①②
C、①②③D、全部都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,則f(2014)的值為(  )
A、2014B、-2014
C、0D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊等腰直角三角形ABC的空地,要在這塊空地上開辟一個(gè)內(nèi)接矩形EFGH的綠地,已知AB⊥AC,AB=4,綠地面積最大值為( 。
A、6
B、4
2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知xi>0(i=1,2,3,…n),我們知道有(x1+x2)(
1
x1
+
1
x2
)≥4成立.
(Ⅰ)請(qǐng)猜測(cè)(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥?;(x1+x2+x3+x4)(
1
x1
+
1
x2
+
1
x3
+
1
x4
)≥?
(Ⅱ)由上述幾個(gè)不等式,請(qǐng)你猜測(cè)與x1+x2+…+xn
1
x1
+
1
x2
+…+
1
xn
(N≥2,n∈N*);(有關(guān)的不等式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正整數(shù)數(shù)列{an}中,其前n項(xiàng)的和為Sn且滿足Sn=
1
8
(an+2)2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
2
x-1 
-1
(1)記g(x)=f(x+1),試證明:g(x)圖象關(guān)于原點(diǎn)對(duì)稱.
(2)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x,當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)為P(3,4),且過點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在直角坐標(biāo)系中畫出函數(shù)f(x)的草圖;
(3)寫出函數(shù)f(x)的值域;
(4)寫出函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案