【題目】已知命題P:函數(shù) 的定義域為R;命題q:x∈R,使不等式a>e2x﹣ex成立;命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.
【答案】解:若命題p為真命題,則 在x∈R恒成立,
當(dāng)a=0時顯然不成立,
當(dāng)a≠0時, ;
若命題q為真命題,則 ,
由命題“p∨q”為真命題,“p∧q”為假命題知p,q一真一假,
若p真q假,則 ,無解,
若p假q真,則 ,
綜上所述,
【解析】分別求出p,q為真時的a的范圍,再通過討論p,q的真假,得到關(guān)于a的不等式組,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(1)解方程:25x+1﹣95x+2+500=0;
(2)已知關(guān)于x的不等式ax2﹣5x+b>0的解集為 ,求關(guān)于x的不等式ax2+5x+b<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[2,4],x2﹣2x﹣2a≤0恒成立,命題q:f(x)=x2﹣ax+1在區(qū)間 上是增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(2a﹣1)x﹣lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線經(jīng)過點(2,11),求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào),求實數(shù)a的取值范圍;
(3)設(shè) ,若對x1∈(0,+∞),x2∈[0,π],使得f(x1)+g(x2)≥2成立,求整數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某位股民購進(jìn)某只股票,在接下來的交易時間內(nèi),他的這只股票先經(jīng)歷了 次漲停(每次上漲 ),又經(jīng)歷了 次跌停(每次下跌 ),則該股民這只股票的盈虧情況(不考慮其他費用)是( )
A.略有盈利
B.略有虧損
C.沒有盈利也沒有虧損
D.無法判斷盈虧情況
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式: C =40;
C +C =41;
C +C +C =42;
C +C +C +C =43;
…
照此規(guī)律,當(dāng)n∈N*時,
C +C +C +…+C = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進(jìn)行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,
空間想象能力突出 | 空間想象能力正常 | 合計 | |
男生 |
|
| |
女生 |
| ||
合計 |
|
(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標(biāo)為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com