分析:(1)利用函數(shù)的對稱性與滿足性質(zhì)f(x+T)=af(x),根據(jù)偶函數(shù)的定義證明即可;
(2)利用函數(shù)為似周期函數(shù)的性質(zhì)求解即可;
(3)利用分類討論思想,分析函數(shù)為單調(diào)函數(shù)的條件求解.
解答:解:(1)∵x∈R關(guān)于原點對稱,
又函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,f(1-x)=f(1+x)①
又T=1,∴f(x+1)=af(x),②,
用-x代替x得f(-x+1)=af(-x),③
由①②③可知af(x)=af(-x),∵a≠1且a≠0,∴f(x)=f(-x).即函數(shù)f(x)是偶函數(shù);
(2)當(dāng)n≤x<n+1(n∈Z)時,0≤x-n<1(n∈Z)f(x)=2f(x-1)=22f(x-2)=…=2nf(x-n)=2n(x-n)(n+1-x);
(3)當(dāng)nT<x≤(n+1)T(n∈N)時,0<x-nT≤T(n∈N)f(x)=af(x-T)=a2f(x-2T)=…=anf(x-nT)=an3x-nT
顯然a<0時,函數(shù)y=f(x)在區(qū)間(0,+∞)上不是單調(diào)函數(shù),
又a>0時,f(x)=an3x-nT,x∈(nT,(n+1)T],n∈N是增函數(shù),
此時f(x)∈(an,an3T],x∈(nT,(n+1)T],n∈N,
若函數(shù)y=f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),那么它必須是增函數(shù),則必有an+1≥an3T,
解得a≥3T.
點評:本題考查函數(shù)的周期性、函數(shù)的奇偶性、單調(diào)性的判斷與證明.