下列四個命題:①若
a
b
=
a
c
,則
b
=
c
; ②若△ABC不是直角三角形,則tanAtanBtanC=tanA+tanB+tanC;③函數(shù)y=|tan
x
2
|
的最小正周期為2π;④(
a
|
a
|
+
b
|
b
|
)•(
.
a
|
a
|
-
b
|
b
|
)=0
.其中正確的命題為______.(寫出所有正確命題的序號)
對各個選項分別加以判別:
對于①,若
a
b
=
a
c
,移項得
a
(
b
-
c
)  =0

說明向量
a
與向量
b
-
c
互相垂直,不一定有
b
=
c
,故①不正確;
對于②,若△ABC不是直角三角形,則由tan(B+C)=tan(π-A),得
tanB+tanC
1-tanBtanC
=-tanA

整理可得tanAtanBtanC=tanA+tanB+tanC,故②正確;
對于③,根據(jù)正切函數(shù)周期公式可得y=tan
x
2
的周期為2π,
再取絕對值,得函數(shù)y=|tan
x
2
|
的最小正周期為2π,命題③正確;
對④,(
a
|
a
|
+
b
|
b
|
)•(
.
a
|
a
|
-
b
|
b
|
)
=
(
a
) 2
|
a
| 2
-
(
b
) 2
|
b
| 2
=1-1=0,命題④正確;
故答案為:②③④
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知a、b為直線,α、β為平面.在下列四個命題中,
①若a⊥α,b⊥α,則a∥b;  ②若 a∥α,b∥α,則a∥b;
③若a⊥α,a⊥β,則α∥β;   ④若α∥b,β∥b,則α∥β.
正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ab為直線,α、β為平面.在下列四個命題中,

①  若a⊥α,b⊥α,則ab ;  ②  若 a∥α,b ∥α,則ab;

③  若a⊥α,a⊥β,則α∥β;   ④  若α∥b,β∥b ,則α∥β.

正確命題的個數(shù)是

  (A) 1              (B) 3              (C) 2                  (D) 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:選擇題

已知ab為直線,α、β為平面.在下列四個命題中,                       

       ①  若a⊥α,b⊥α,則ab ;                ②  若 a∥α,b ∥α,則ab

       ③  若a⊥α,a⊥β,則α∥β;                  ④  若α∥b,β∥b ,則α∥β.

正確命題的個數(shù)是                                                                                          (    )

      A. 1                    B. 3                      C. 2                     D. 0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為直線,α、β為平面.在下列四個命題中,                       

       ①  若a⊥α,b⊥α,則ab ;             ②  若 a∥α,b ∥α,則ab;

       ③  若a⊥α,a⊥β,則α∥β;               ④  若α∥b,β∥b ,則α∥β.

正確命題的個數(shù)是                                                                                          (    )

      A. 1          B. 3    C. 2  D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)專項復(fù)習(xí):立體幾何(5)(解析版) 題型:選擇題

已知a、b為直線,α、β為平面.在下列四個命題中,
①若a⊥α,b⊥α,則a∥b;  ②若 a∥α,b∥α,則a∥b;
③若a⊥α,a⊥β,則α∥β;   ④若α∥b,β∥b,則α∥β.
正確命題的個數(shù)是( )
A.1
B.3
C.2
D.0

查看答案和解析>>

同步練習(xí)冊答案