函數(shù)y=ax與y=-a-x(a>0,a≠1)的圖象(    )

A.關(guān)于x軸對稱                      B.關(guān)于y軸對稱

C.關(guān)于原點對稱                     D.關(guān)于直線y=-x對稱

C

解析:可利用函數(shù)圖象的對稱性來判斷兩圖象的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=ax與y=-
bx
在(0,+∞)上都是減函數(shù),則函數(shù)y=ax3+bx2+5的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=ax與y=-
bx
在(0,+∞)上都是減函數(shù),則函數(shù)y=ax2+bx在(0,+∞)上是單調(diào)遞
減函數(shù)
減函數(shù)
函數(shù).(填“增函數(shù)”或“減函數(shù)”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0<a<1時,在同一坐標系中,函數(shù)y=ax與y=logax的圖象是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)y=ax與y=loga(-x)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市徐匯區(qū)零陵中學高三3月綜合練習數(shù)學試卷(五)(解析版) 題型:解答題

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個不同點關(guān)于直線y=x對稱,求出其坐標;若曲線(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的范圍;
(3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取加以研究.當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

同步練習冊答案