18.若數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=$\frac{3}{2}$an-3,求數(shù)列{an}的通項(xiàng)公式.

分析 由已知數(shù)列遞推式求出首項(xiàng),得到當(dāng)n≥2時(shí),Sn-1=$\frac{3}{2}$an-1-3,與原遞推式作差后可得數(shù)列{an}是以6為首項(xiàng),以3為公比的等比數(shù)列.再由等比數(shù)列的通項(xiàng)公式得答案.

解答 解:由Sn=$\frac{3}{2}$an-3,得${a}_{1}=\frac{3}{2}{a}_{1}-3$,即a1=6.
當(dāng)n≥2時(shí),Sn-1=$\frac{3}{2}$an-1-3,
兩式作差得an=$\frac{3}{2}$an-$\frac{3}{2}$an-1,即$\frac{1}{2}$an=$\frac{3}{2}$an-1
∴an=3an-1(n≥2).
則數(shù)列{an}是以6為首項(xiàng),以3為公比的等比數(shù)列.
∴an=6•3n-1=2•3n

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)p:$\left\{\begin{array}{l}{4x+3y-12≥0}\\{3-x≥0}\\{x+3y≤12}\end{array}\right.$(x,y∈R),q:x2+y2≤r2(x,y∈R,r>0)若p是q的充分不必要條件,則r的取值范圍是[3$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x3+x-6,若不等式f(x)≤m2-2m+3對于所有x∈[-2,2]恒成立,則實(shí)數(shù)m的取值范圍是m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=ax+\frac{x}+5\;(a≠0,b≠0)$,f(2)=3,則f(-2)=(  )
A.7B.-7C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若函數(shù)f(x)滿足下列條件:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)具有性質(zhì)M;反之,若x0不存在,則稱函數(shù)f(x)不具有性質(zhì)M
(Ⅰ)證明:函數(shù)f(x)=2x具有性質(zhì)M,并求出對應(yīng)的x0的值;
(Ⅱ) 試探究函數(shù)y=ax(a>0且a≠1)是否具有性質(zhì)M?并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|(ax-1)(ax+2)≤0},集合B={x|-2≤x≤4}.若x∈B是x∈A的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}}-2,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,如果f(x0)>1,則x0的取值范圍是( 。
A.x0<-1或x0>1B.-log23<x0<1C.x0<-1D.x0<-log23或x0>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=2ex(x<1)的反函數(shù)f-1(x)=ln$\frac{x}{2}$,x∈(0,2e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=loga(x+2)-1(a>0,a≠1).
(1)當(dāng)a>1,f(x)在[0,1]上的最大值與最小值互為相反數(shù),求a的值;
(2)當(dāng)a>1時(shí),若f(x)的圖象不經(jīng)過第四象限,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案