(文)某汽車生產企業(yè)上年度生產一品牌汽車的投入成本為10萬元/輛,出廠價為13萬元/輛,年銷售量為5000輛.本年度為適應市場需求,計劃提高產品檔次,適當增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應提高的比例為0.7x,年銷售量也相應增加.已知年利潤=(每輛車的出廠價-每輛車的投入成本)×年銷售量.
(1)若年銷售量增加的比例為0.4x,為使本年度的年利潤比上年度有所增加,則投入成本增加的比例x應在什么范圍內?
(2)年銷售量關于x的函數為y=3240(-x2+2x+),則當x為何值時,本年度的年利潤最大?最大利潤為多少?
0<x<時 當x=時,本年度的年利潤最大,最大利潤為20000萬元。
(文)(1)由題意得:上年度的利潤為(13-10)×5000=15000萬元;本年度每輛車的投入成本為10×(1+x);本年度每輛車的出廠價為13×(1+0.7x);本年度年銷售量為5000×(1+0.4x),因此本年度的利潤為y=[13×(1+0.7x)-10×(1+x)]×5000×(1+0.4x)=(3-0.9x)×5000×(1+0.4x)=-1800x2+1500x+15000(0<x<1),由-1800x2+1500x+15000>15000,解得0<x<,所以當0<x<時,本年度的年利潤比上年度有所增加. 5分
(2)本年度的利潤為f(x)=(3-0.9x)×3240×(-x2+2x+)=3240×(0.9x3-4.8x2+4.5x+5),則f′(x)=3240×(2.7x2-9.6x+4.5)=972(9x-5)(x-3) 8分
由f′(x)=0,解得x=或x=3,當x∈(0,)時,f′(x)>0,f(x)是增函數;當x∈(,1)時,f′(x)<0,f(x)是減函數. 10分
∴當x=時,f(x)取極大值f()=20000萬元,
因為f(x)在(0,1)上只有一個極大值,所以它是最大值,
所以當x=時,本年度的年利潤最大,最大利潤為20000萬元! 12分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com