在映射f:A→B中,A=B={(x,y)丨x,y∈R},且f:(x,y)→(x-y,x+y),則A中的元素(-1,3)對應(yīng)在B中的元素為(  )
分析:根據(jù)兩個(gè)集合之間的對應(yīng)關(guān)系,寫出A中的元素(-1,3)對應(yīng)的關(guān)于x,y的式子(x-y,x+y)即可.
解答:解:∵從A到B的映射f:(x,y)→(x-y,x+y),
A中的元素(-1,3),即x=-1,y=3,
∴x-y=-1-3=-4,x+y=-1+3=2,
∴在映射f下A中的元素(-1,3)對應(yīng)在B中的元素(-4,2).
故選A.
點(diǎn)評:本題考查映射,本題解題的關(guān)鍵是看出兩個(gè)集合的對應(yīng)的關(guān)系,寫出兩個(gè)集合對應(yīng)的變量的關(guān)系式,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),則與A中的元素(-1,2)對應(yīng)的B中的元素為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,且f:(x,y)→(x-y,x+y),則與A中的元素(-1,2)對應(yīng)的B中的元素為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x-y,x+y),則與B中元素(-4,1)相對應(yīng)的A中元素為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中,B中任一個(gè)元素都有原象對應(yīng);A={(x,y)|x-2y=1},B={(x,y)|y=f(x)}且f:(x,y)→(x-y,xy).求函數(shù)y=f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案