“趙爽弦圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示).某同學(xué)隨機地在大正方形及其內(nèi)部區(qū)域投針,若直角三角形的兩條直角邊的長分別是2和1,則針扎到小正方形(陰影)區(qū)域的概率是( )

A.
B.
C.
D.
【答案】分析:根據(jù)幾何概型的意義,求出小正方形的面積,再求出大正方形的面積,算出其比值即可.
解答:解:根據(jù)題意分析可得:
正方形ABCD邊長為 =,故面積為5;
陰影部分邊長為2-1=1,面積為1;
則針扎到小正方形(陰影)區(qū)域的概率是即兩部分面積的比值為
故選D.
點評:本題考查幾何概型的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積和總面積的比,這個比即事件(A)發(fā)生的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是以我國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么cos2θ的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)“趙爽弦圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示).某同學(xué)隨機地在大正方形及其內(nèi)部區(qū)域投針,若直角三角形的兩條直角邊的長分別是2和1,則針扎到小正方形(陰影)區(qū)域的概率是(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2002年在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是我國以古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為
1
25
,大正方形的面積為1,直角三角形中較小的銳角為θ,那么sin2θ-cos2θ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2002年8月在北京召開的國際數(shù)學(xué)家大會,會標(biāo)是我國以古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,則sin2θ-cos2θ的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)2002年在北京召開的世界數(shù)學(xué)家大會會標(biāo)圖案是由四個全等的直角三角形圍成的一個大正方形,中間的陰影部分是一個小正方形的“趙爽弦圖”.若這四個全等的直角三角形有一個角為30°,頂點B1、B2、B3、…、Bn和C1、C2、C3、…、Cn分別在直線y=-
1
2
x+
3
+1
和x軸上,則第n個陰影正方形的面積為
 

查看答案和解析>>

同步練習(xí)冊答案