10.下列圖形中,不可能是函數(shù)y=f(x)的圖象的是(  )
A.B.C.D.

分析 通過圖象,直接利用函數(shù)的定義,判斷即可.

解答 解:由函數(shù)的定義,可知,選項(xiàng)A,C,D都是函數(shù)的圖象,選項(xiàng)B不是函數(shù)的圖象.
故選:B.

點(diǎn)評 本題考查函數(shù)的圖象的判斷,函數(shù)的定義的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x-1)=0,且在[-5,-4]上是增函數(shù),A,B是銳角三角形的兩個內(nèi)角,則( 。
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=4sinθ.
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)φ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=x(x-c)2在x=2處有極小值,則常數(shù)c的值為( 。
A.2B.6C.2或6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點(diǎn).
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x-a必有局部對稱點(diǎn);
(2)若函數(shù)f(x)=2x+b在區(qū)間[-1,1]內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線關(guān)于x軸對稱,頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A,B均在拋物線上,
(1)求該拋物線的標(biāo)準(zhǔn)方程;
(2)若線段AB的中點(diǎn)為(1,-1),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.橢圓與雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦點(diǎn)相同,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為10,則橢圓的離心率為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\frac{sinx+1}{cosx}=\frac{1}{2}$,則$\frac{sinx-1}{cosx}$的值是(  )
A.$\frac{1}{2}$B.2C.$-\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)給出函數(shù)${f_1}(x)=lg\frac{x}{10},\;\;{f_2}(x)=lg10x,\;\;h(x)=lgx$,h(x)是否為f1(x),f2(x)的生成函數(shù)?并說明理由;
(2)設(shè)${f_1}(x)={log_2}x,\;\;{f_2}(x)={log_{\frac{1}{2}}}x,\;\;a=2,\;\;b=1$,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)${f_1}(x)=x\;\;(x>0),\;\;\;{f_2}(x)=\frac{1}{x}\;\;\;(x>0)$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對于任意正實(shí)數(shù)x1,x2且x1+x2=1.試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案