已知?jiǎng)訄A與兩定圓C1:(x+5)2+y2=49,C2:(x-5)2+y2=1都外切,求動(dòng)圓圓心的軌跡方程.

答案:
解析:

  解:設(shè)動(dòng)圓圓心為P(x,y),半徑為r,因?yàn)閳A與圓外切,依題則有|PC1|=r+7,|PC2|=r+1,所以|PC1|-|PC2|=6<|C1C2|=10,所以點(diǎn)P的軌跡是以C1、C2為焦點(diǎn)的雙曲線,且靠近點(diǎn)C2的一支,且a=3,c=5,∴b=4,∴P點(diǎn)的軌跡方程是=1(x≥3).

  分析:抓住外切的條件,尋找距離之間的關(guān)系.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-1)2+y2=16,圓C2:(x+1)2+y2=1,點(diǎn)S為圓C1上的一個(gè)動(dòng)點(diǎn),現(xiàn)將坐標(biāo)平面折疊,使得圓心C2(-1,0)恰與點(diǎn)S重合,折痕與直線SC1交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)過動(dòng)點(diǎn)S作圓C2的兩條切線,切點(diǎn)分別為M、N,求MN的最小值;
(3)設(shè)過圓心C2(-1,0)的直線交圓C1于點(diǎn)A、B,以點(diǎn)A、B分別為切點(diǎn)的兩條切線交于點(diǎn)Q,求證:點(diǎn)Q在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港市常青藤實(shí)驗(yàn)中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-1)2+y2=16,圓C2:(x+1)2+y2=1,點(diǎn)S為圓C1上的一個(gè)動(dòng)點(diǎn),現(xiàn)將坐標(biāo)平面折疊,使得圓心C2(-1,0)恰與點(diǎn)S重合,折痕與直線SC1交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)過動(dòng)點(diǎn)S作圓C2的兩條切線,切點(diǎn)分別為M、N,求MN的最小值;
(3)設(shè)過圓心C2(-1,0)的直線交圓C1于點(diǎn)A、B,以點(diǎn)A、B分別為切點(diǎn)的兩條切線交于點(diǎn)Q,求證:點(diǎn)Q在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港市常青藤實(shí)驗(yàn)中學(xué)高三(上)9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-1)2+y2=16,圓C2:(x+1)2+y2=1,點(diǎn)S為圓C1上的一個(gè)動(dòng)點(diǎn),現(xiàn)將坐標(biāo)平面折疊,使得圓心C2(-1,0)恰與點(diǎn)S重合,折痕與直線SC1交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)過動(dòng)點(diǎn)S作圓C2的兩條切線,切點(diǎn)分別為M、N,求MN的最小值;
(3)設(shè)過圓心C2(-1,0)的直線交圓C1于點(diǎn)A、B,以點(diǎn)A、B分別為切點(diǎn)的兩條切線交于點(diǎn)Q,求證:點(diǎn)Q在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省南通市教研室高考數(shù)學(xué)全真模擬試卷(二)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-1)2+y2=16,圓C2:(x+1)2+y2=1,點(diǎn)S為圓C1上的一個(gè)動(dòng)點(diǎn),現(xiàn)將坐標(biāo)平面折疊,使得圓心C2(-1,0)恰與點(diǎn)S重合,折痕與直線SC1交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)過動(dòng)點(diǎn)S作圓C2的兩條切線,切點(diǎn)分別為M、N,求MN的最小值;
(3)設(shè)過圓心C2(-1,0)的直線交圓C1于點(diǎn)A、B,以點(diǎn)A、B分別為切點(diǎn)的兩條切線交于點(diǎn)Q,求證:點(diǎn)Q在定直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案