精英家教網 > 高中數學 > 題目詳情

數列{an}中,a1=8,a4=2,且滿足

(1)求數列{an}的通項公式;

(2)設,求Sn

答案:
解析:

  (1)

  ∴為常數列,∴{an}是以為首項的等差數列  2分

  設,,∴,∴  4分

  (2)∵,令,得

  當時,;當時,;當時,

  ∴當時,

  ,其中  8分

  當時,  10分

  ∴  12分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

數列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項公式an

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于( 。
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中,a1=-60,an+1-an=3,(1)求數列{an}的通項公式an和前n項和Sn(2)問數列{an}的前幾項和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中,a1=1,對?n∈N*,an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•長寧區(qū)一模)如果一個數列{an}對任意正整數n滿足an+an+1=h(其中h為常數),則稱數列{an}為等和數列,h是公和,Sn是其前n項和.已知等和數列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習冊答案