【題目】自2017年起,全國(guó)各省市陸續(xù)實(shí)施了新高考,許多省市采用了“”的選科模式,即:考生除必考的語(yǔ)數(shù)外三科外,再?gòu)奈锢砘瘜W(xué)生物歷史地理政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地調(diào)查小組對(duì)某中學(xué)進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為.
(1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,將選物理且選化學(xué)的人數(shù)占選化學(xué)總?cè)藬?shù)的比作為概率,從該中學(xué)選化學(xué)的考生中隨機(jī)抽取4人,記這4人中選物理且選擇化學(xué)的考生人數(shù)為,求的分布列(用排列數(shù)組合數(shù)表示即可)和數(shù)學(xué)期望.
(2)若研究得到在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理且選化學(xué)的人數(shù)至少有多少?(單位:百人,精確到0.01)
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)分布列見(jiàn)解析,數(shù)學(xué)期望為.(2)至少537人.
【解析】
(1)分別計(jì)算出選物理且選化學(xué)和選化學(xué)不選物理的人數(shù),利用超幾何分布的性質(zhì)即可得分布列和期望,即可得解;
(2)設(shè)選物理又選化學(xué)的人數(shù)為,列出聯(lián)表,計(jì)算出,令解不等式即可得解.
(1)由題意列聯(lián)表如圖:
選化學(xué) | 不選化學(xué) | 合計(jì)(人數(shù)) | |
選物理 | 400 | 100 | 500 |
不選物理 | 50 | 450 | 500 |
合計(jì)(人數(shù)) | 450 | 550 | 1000 |
所以,,,
,,
則分布列為
0 | 1 | 2 | 3 | 4 | |
由題意選物理且選化學(xué)的人數(shù)占選化學(xué)總?cè)藬?shù)的比為,且符合超幾何分布,
所以.
(2)設(shè)選物理又選化學(xué)的人數(shù)為,則列聯(lián)表如下:
選化學(xué) | 不選化學(xué) | 合計(jì)(人數(shù)) | |
選物理 | |||
不選物理 | |||
合計(jì)(人數(shù)) |
所以:.
在犯錯(cuò)誤概率不超過(guò)0.01的前提下,則,即,
即:.
所以選物理又選化學(xué)的人數(shù)至少有5.37(百人),即至少537人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)射線(xiàn)的極坐標(biāo)方程為,若射線(xiàn)與曲線(xiàn)的交點(diǎn)為,與直線(xiàn)的交點(diǎn)為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,是上一點(diǎn),直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),若,則( )
A. B. 8 C. 16 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于正整數(shù),如果個(gè)整數(shù)滿(mǎn)足,
且,則稱(chēng)數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.
(Ⅰ)寫(xiě)出整數(shù)4的所有“正整數(shù)分拆”;
(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;
(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.
(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱(chēng)這兩個(gè)“正整數(shù)分拆”是相同的.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于曲線(xiàn),給出下列三個(gè)結(jié)論:
① 曲線(xiàn)關(guān)于原點(diǎn)對(duì)稱(chēng),但不關(guān)于軸、軸對(duì)稱(chēng);
② 曲線(xiàn)恰好經(jīng)過(guò)4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
③ 曲線(xiàn)上任意一點(diǎn)到原點(diǎn)的距離都不大于.
其中,正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解一個(gè)智力游戲是否與性別有關(guān),從某地區(qū)抽取男女游戲玩家各200請(qǐng)客,其中游戲水平分為高級(jí)和非高級(jí)兩種.
(1)根據(jù)題意完善下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān)?
性別 | 高級(jí) | 非高級(jí) | 合計(jì) |
女 | 40 | ||
男 | 140 | ||
合計(jì) |
(2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;
若甲入選了10人名單,求甲成為參賽選手的概率;
設(shè)抽取的3名選手中女生的人數(shù)為,求的分布列和期望.
附表:,其中.
0.010 | 0.05 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,得到甲、乙兩位學(xué)生成績(jī)的莖葉圖.
(1)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,對(duì)預(yù)賽成績(jī)的平均值和方差進(jìn)行分析,你認(rèn)為哪位學(xué)生的成績(jī)更穩(wěn)定?請(qǐng)說(shuō)明理由;
(2)若將頻率視為概率,求乙同學(xué)在一次數(shù)學(xué)競(jìng)賽中成績(jī)高于84分的概率;
(3)求在甲同學(xué)的8次預(yù)賽成績(jī)中,從不小于80分的成績(jī)中隨機(jī)抽取2個(gè)成績(jī),列出所有結(jié)果,并求抽出的2個(gè)成績(jī)均大于85分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年國(guó)際籃聯(lián)籃球世界杯將于2019年8月31日至9月15日在中國(guó)的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳國(guó)際籃聯(lián)籃球世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否會(huì)收看該國(guó)際籃聯(lián)籃球世界杯賽事的情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
會(huì)收看 | 不會(huì)收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根據(jù)上表說(shuō)明,能否有99%的把握認(rèn)為是否會(huì)收看該國(guó)際籃聯(lián)籃球世界杯賽事與性別有關(guān)?
(2)甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與,且乙投球3次均未命中的概率為.
(i)求乙投球的命中率;
(ii)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.
附:,其中,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com