若函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
,若f(a)<f(-a),則實數(shù)a的取值范圍是( 。
分析:當a>0時,-a<0,f(a)=log2a,f(-a)=log
1
2
a
,解不等式f(a)<f(-a)求得實數(shù)a的取值范圍;
當a<0 時,-a>0,f(a)=log
1
2
( -a)
,f(-a)=log2(-a),由f(a)<f(-a)求得實數(shù)a的取值范圍;
再把a的取值范圍取并集,即得所求.
解答:解:由函數(shù)f(x)的解析式可得,函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞).
當a>0時,-a<0,f(a)=log2a,f(-a)=log
1
2
a

由f(a)<f(-a)得  log2a<log
1
2
a
=log2
1
a
,∴a<
1
a
,解得 1>a>0.
當a<0 時,-a>0,f(-a)=log
1
2
( -a)
,f(a)=log2(-a),
由f(a)<f(-a)得 log
1
2
( -a)
<log2(-a),即 log2(
1
-a
)
<log2(-a),∴
1
-a
<-a,解得 a<-1.
綜上得:0<a<1,或a<-1,
故選B.
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點,分段函數(shù)的解析式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:陜西省漢中地區(qū)2007-2008學年度高三數(shù)學第一學期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:汨羅市第三中學2008屆高三第二次月考2、數(shù)學 題型:044

函數(shù)f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域為R,值域為(-∞,-1],試求實數(shù)a的值;

(2)若f(x)在(-∞,1]內(nèi)是增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:蘇教版江蘇省揚州市2007-2008學年度五校聯(lián)考高三數(shù)學試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實數(shù)m的取值范圍;

(2)設g(x)=f(x)+lnx,當m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省莒南一中2008-2009學年度高三第一學期學業(yè)水平階段性測評數(shù)學文 題型:044

設f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案