(本小題滿分14分) 
解:(1),
    …………………………………4分
(2)猜想: 即:
(n∈N*)……5分
下面用數(shù)學歸納法證明
n=1時,已證S1=T1  ………………………………………………………………6分
假設n=k時,Sk=Tk(k≥1,k∈N*),即:
………………8分

 ……………………………………………………10分
 ……………………11分



由①,②可知,對任意n∈N*,Sn=Tn都成立. ………………………………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

用數(shù)學歸納法證明12+22+32+42+…+n2 = 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在用數(shù)學歸納法證明時,在驗證當時,等式左邊為(  )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.用數(shù)學歸納法證明時,由k到k+1,不等式左端的變化是(    )
A.增加B.增加兩項
C.增加兩項且減少一項D.以上結(jié)論均錯

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設實數(shù)q滿足|q|<1,數(shù)列{an}滿足:a1=2,a2≠0,an·an+1=-qn,求an表達式,又如果S2n<3,求q的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)學歸納法證明“”時,驗證當時,等式的左邊為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用數(shù)學歸納法證明等式,第二步,“假設當
時等式成立,則當時有
”,其中              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則對于,
          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用數(shù)學歸納法證明1+a+a2+…+an+1=(n∈N,a≠1),在驗證n=1成立時,等式左邊所得的項為( )
A.1B.1+aC.1+a+a2D.1+a+a2+a3.

查看答案和解析>>

同步練習冊答案