定義域?yàn)镽的奇函數(shù)f(x)是減函數(shù),當(dāng)不等式f(a)+f(a2)<0成立時(shí),實(shí)數(shù)a的取值范圍是( )
A.a(chǎn)<-1或a>0
B.-1<a<0
C.a(chǎn)<0或a>1
D.a(chǎn)<-1或a>1
【答案】分析:先根據(jù)函數(shù)是定義在R上的奇函數(shù),把不等式f(a)+f(a2)<0變形為f(a2)<-f(a),
再根據(jù)f(x)在R上是減函數(shù),去函數(shù)符號(hào),再解關(guān)于a的二次不等式即可.
解答:解:∵f(a)+f(a2)<0,∴f(a2)<-f(a),
又∵f(x)為奇函數(shù),∴f(a2)<f(-a),
∵f(x)在R上是減函數(shù),∴a2>-a,
解得a<-1或a>0.
故選A
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性與單調(diào)性,做題時(shí)應(yīng)認(rèn)真分析,找到切入點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、定義域?yàn)镽的奇函數(shù)f(x)是減函數(shù),當(dāng)不等式f(a)+f(a2)<0成立時(shí),實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•合肥二模)定義域?yàn)镽的奇函數(shù)f(x )的圖象關(guān)于直線.x=1對(duì)稱,當(dāng)x∈[0,1]時(shí),f(x)=x,方程 f(x)=log2013x實(shí)數(shù)根的個(gè)數(shù)為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2011)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題:
①已知函數(shù)y=2sin(x+?)(0<?<π)的圖象如圖所示,則φ=
π
6
5
6
π;
②在△ABC中,∠A>∠B是sinA>sinB的充要條件;
③定義域?yàn)镽的奇函數(shù)f(x)滿足f(1+x)=-f(x),則f(x)的圖象關(guān)于點(diǎn)(
1
2
,0)
對(duì)稱;
④對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);其中正確命題序號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的奇函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈(0,1)時(shí),f(x)=
2x-12x+1

(Ⅰ)求f(x)在[-1,1]上的解析式;
(Ⅱ)若存在x∈(0,1),滿足f(x)>m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案