數(shù)列的前n項和為

(1)求數(shù)列的通項公式;

(2)等差數(shù)列的各項為正,其前n項和為成等比數(shù)列,求的最小值.

 

【答案】

解:(1)見解析;

             ……………………6分

 (2)

的最小值為6。

【解析】本試題主要是考查了數(shù)列的通項公式和的求解和數(shù)列求和的綜合運用。

(1)因為以上兩式相減得:

   ,然后得到數(shù)列的通項公式。

(3)因為等差數(shù)列的各項為正,其前n項和為成等比數(shù)列,由(1)知的公差為d,,從而利用公式得到結(jié)論。

解:(1)以上兩式相減得:

   ……3分

是以公比為3的等比數(shù)列,

             ……………………6分

 (2)由(1)知的公差為d

         …………………8分

由題意:,

       ……………………10分

各項為正,

的最小值為6。       ……………………13分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知:有窮數(shù)列{an}共有2k項(整數(shù)k≥2 ),a1=2,設(shè)該數(shù)列的前n項和為Sn且滿足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通項公式.
(2)設(shè)bn=log2an,求{bn}的前n項和Tn
(3)設(shè)cn=
Tn
n
,若a=2,求滿足不等式|c1-
3
2
|+|c2-
3
2
|+…+|c2k-1-
3
2
|+|c2k-
3
2
|
36
11
時k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}是一個無窮數(shù)列,記Tn=
n+2i=1
2i-1ai+2a1-a3-2n+2an+1
,n∈N*
(1)若{an}是等差數(shù)列,證明:對于任意的n∈N*,Tn=0;
(2)對任意的n∈N*,若Tn=0,證明:an是等差數(shù)列;
(3)若Tn=0,且a1=0,a2=1,數(shù)列bn滿足bn=2an,由bn構(gòu)成一個新數(shù)列3,b2,b3,…,設(shè)這個新數(shù)列的前n項和為Sn,若Sn可以寫成ab,(a,b∈N,a>1,b>1),則稱Sn為“好和”.問S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1為a(a∈R)設(shè)數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(Ⅱ)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,當n≥2時,試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項為a(a∈R,a≠0).設(shè)數(shù)列的前n項和為Sn,且對任意正整數(shù)n都有
a2n
an
=
4n-1
2n-1

(1)求數(shù)列{an}的通項公式及Sn;
(2)是否存在正整數(shù)n和k,使得Sn,Sn+1,Sn+k成等比數(shù)列?若存在,求出n和k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•豐臺區(qū)二模)已知等差數(shù)列{an}的公差d≠0,該數(shù)列的前n項和為Sn,且滿足S3=a5=a22
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)b1=a1,bn+1-bn=2an(n∈N*),求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案