【題目】如圖,在平面四邊形ABCD中,AB=5 , ∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的長;
(Ⅱ)求CD的長.
科目:高中數(shù)學 來源: 題型:
【題目】某單位招聘面試,每次從試題庫隨機調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學期望)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)不等式mx2-2x-m+1<0對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,利用一次函數(shù)的單調(diào)性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,
則需要f(﹣2)<0,f(2)<0.
解不等式組,解得,
∴x的取值范圍是.
【點睛】
本題考查了一次函數(shù)的單調(diào)性、一元二次不等式的解法,考查了轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于中檔題.
【題型】解答題
【結(jié)束】
21
【題目】某廠有一批長為18m的條形鋼板,可以割成1.8m和1.5m長的零件.它們的加工費分別為每個1元和0.6元.售價分別為20元和15元,總加工費要求不超過8元.問如何下料能獲得最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A(1,2,3),B(2,1,2),C(1,1,2),O為坐標原點,點D在直線OC上運動,則當·取最小值時,點D的坐標為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= , g(x)=asin(x+π)﹣2a+2(a>0),給出下列結(jié)論:
①函數(shù)f(x)的值域為[0,];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對任意a>0,方程f(x)=g(x)在區(qū)間[0,1]內(nèi)恒有解;
④若x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是:≤a≤ .
其中所有正確結(jié)論的序號為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:ρsin=4和圓C:ρ=2kcos(k≠0),若直線l上的點到圓C上的點的最小距離等于2.求實數(shù)k的值并求圓心C的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com