(本題滿分12分)
已知函數(shù),為實(shí)數(shù),.
(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點(diǎn)且與曲線相切的直線的方程;
(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點(diǎn)個(gè)數(shù).
(Ⅲ)當(dāng)時(shí),,函數(shù)為單調(diào)遞增,極值點(diǎn)個(gè)數(shù)為0;
當(dāng)時(shí),此時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)極值點(diǎn)的定義,
可知函數(shù)有兩個(gè)極值點(diǎn).
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)因?yàn)楹瘮?shù),為實(shí)數(shù),.求解導(dǎo)數(shù)。判定單調(diào)性和最值,結(jié)合在區(qū)間上的最小值、最大值分別為、1得到參數(shù)、的值;
(2)在(Ⅰ)的條件下,先求解導(dǎo)數(shù)值,然后得到經(jīng)過點(diǎn)且與曲線相切的直線的方程;
(Ⅲ)設(shè)函數(shù),函數(shù)的極值點(diǎn)個(gè)數(shù)就是分析單調(diào)性來得到結(jié)論。
解:(Ⅰ)由,得,.
∵,,
∴ 當(dāng)時(shí),,遞增;
當(dāng)時(shí),, 遞減.
∴ 在區(qū)間上的最大值為,∴.……………………2分
又,,∴ .
由題意得,即,得.
故,為所求. ………………………………4分
(Ⅱ)解:由(1)得,,點(diǎn)在曲線上.
⑴ 當(dāng)切點(diǎn)為時(shí),切線的斜率,
∴ 的方程為,即. ……………………5分
⑵當(dāng)切點(diǎn)不是切點(diǎn)時(shí),設(shè)切點(diǎn)為,
切線的斜率,
∴ 的方程為 .
又點(diǎn)在上,∴ ,
∴ ,
∴ ,
∴ ,即,∴.
∴ 切線的方程為
故所求切線的方程為或. ………………………………8分
(Ⅲ)解: .
∴
二次函數(shù)的判別式為
,
令,得:
令,得 ………………………………10分
∵,,
∴當(dāng)時(shí),,函數(shù)為單調(diào)遞增,極值點(diǎn)個(gè)數(shù)為0;
當(dāng)時(shí),此時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)極值點(diǎn)的定義,
可知函數(shù)有兩個(gè)極值點(diǎn). ………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com