在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,已知bcosC+ccosB=2b,則
a
b
=
 
考點(diǎn):正弦定理
專題:三角函數(shù)的求值
分析:已知等式利用正弦定理化簡,再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,再利用正弦定理變形即可得到結(jié)果.
解答: 解:將bcosC+ccosB=2b,利用正弦定理化簡得:sinBcosC+sinCcosB=2sinB,
即sin(B+C)=2sinB,
∵sin(B+C)=sinA,
∴sinA=2sinB,
利用正弦定理化簡得:a=2b,
a
b
=2.
故答案為:2
點(diǎn)評:此題考查了正弦定理,以及兩角和與差的正弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=
1
2
(|x-a2|+|x-2a2|-3a2),若?x∈R,f(x-1)≤f(x),則實(shí)數(shù)a的取值范圍為(  )
A、[-
1
6
1
6
]
B、[-
6
6
6
6
]
C、[-
1
3
,
1
3
]
D、[-
3
3
3
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,(
1-i
1+i
2=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α,β是兩個(gè)不同的平面,則(  )
A、若m⊥n,n∥α,則m⊥α
B、若m∥β,β⊥α,則m⊥α
C、若m⊥β,n⊥β,n⊥α,則m⊥α
D、若m⊥n,n⊥β,β⊥α,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調(diào)區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b對一切x>0恒成立?若存在,求出該一次函數(shù)的表達(dá)式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
(a>0),g(x)=2lnx.
(1)若對[1,+∞)內(nèi)任意的x,不等式f(x)≥g(x)恒成立,求a的取值范圍;
(2)當(dāng)a=1時(shí),
(i).求最大正整數(shù)k,使得任意k個(gè)實(shí)數(shù)x1,x2,…,xk∈[e,3],都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立(e=2.71828…是自然對數(shù)的底數(shù));
(ii).求證:
n
i=1
4i
4i2-1
>ln(2n+1)(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,且b=3,c=1,△ABC的面積為
2
,求cosA與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在8張獎(jiǎng)券中有一、二、三等獎(jiǎng)各1張,其余5張無獎(jiǎng).將這8張獎(jiǎng)券分配給4個(gè)人,每人2張,不同的獲獎(jiǎng)情況有
 
種(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案