A. | $({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$ | B. | $({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$ | ||
C. | $({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$ | D. | $({3-\sqrt{5},3+\sqrt{5}})$ |
分析 先構(gòu)造函數(shù)設(shè)g(x)=exf(x),再求導(dǎo),得到g′(x)=2x+1,根據(jù)f(0)=0,求出g(x),即可求出f(x),再根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性即可求出答案.
解答 解:由$f(x)+f'(x)=\frac{2x-1}{e^x}$,得ex(f(x)+f′(x))=2x-1,
設(shè)g(x)=exf(x),
∴g′(x)=ex(f(x)+f′(x))=2x-1,
可設(shè)g(x)=x2-x+c,
∵f(0)=0,
∴g(0)=0,
∴c=0,
∴g(x)=x2-x,
∴f(x)=$\frac{g(x)}{{e}^{x}}$=$\frac{{x}^{2}-x}{{e}^{x}}$,
∴f′(x)=$\frac{-{x}^{2}+3x-1}{{e}^{x}}$,
當(dāng)f′(x)≤0時,即-x2+3x-1≤0,解得x≤$\frac{3-\sqrt{5}}{2}$或x≥$\frac{3+\sqrt{5}}{2}$,
故選:A
點評 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系,關(guān)鍵時構(gòu)造函數(shù),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com