拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)和橢圓數(shù)學(xué)公式的右焦點(diǎn)重合,則拋物線的標(biāo)準(zhǔn)方程為


  1. A.
    y2=16x
  2. B.
    y2=8x
  3. C.
    y2=12x
  4. D.
    y2=6x
A
分析:先根據(jù)橢圓方程求得右焦點(diǎn),進(jìn)而求得拋物線方程中的p,拋物線方程可得.
解答:根據(jù)橢圓方程可求得a=5,b=3,
∴c=4,
∴橢圓右焦點(diǎn)為(4,0)
對于拋物線,則p=8,
∴拋物線方程為y2=16x.
故選A.
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì)和拋物線的標(biāo)準(zhǔn)方程.考查了考生對圓錐曲線的基礎(chǔ)知識的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)是橢圓2x2+4y2=16的一個(gè)焦點(diǎn),則此拋物線的焦點(diǎn)到其準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為x軸,焦點(diǎn)F在直線m:y=
43
(x-1)
上,直線m與拋物線相交于A,B兩點(diǎn),P為拋物線上一動(dòng)點(diǎn)(不同于A,B),直線PA,PB分別交該拋物線的準(zhǔn)線l于點(diǎn)M,N.
(1)求拋物線方程;
(2)求證:以MN為直徑的圓C經(jīng)過焦點(diǎn)F,且當(dāng)P為拋物線的頂點(diǎn)時(shí),圓C與直線m相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)是橢圓2x2+y2=1的一個(gè)焦點(diǎn),則此拋物線的焦點(diǎn)到準(zhǔn)線的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為y軸,且與圓x2+y2=4相交的公共弦長等于2
3
,則此拋物線的方程為
x2=±3y
x2=±3y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),點(diǎn)P是點(diǎn)F關(guān)于y軸的對稱點(diǎn),過點(diǎn)P的動(dòng)直線ι交拋物線與A,B兩點(diǎn).
(1)若△AOB的面積為
52
,求直線ι的斜率;
(2)試問在x軸上是否存在不同于點(diǎn)P的一點(diǎn)T,使得TA,TB與x軸所在的直線所成的銳角相等,若存在求出定點(diǎn)T的坐標(biāo),若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案