如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若PA=AB,求二面角A-PD-B的余弦值.
精英家教網(wǎng)

精英家教網(wǎng)
(Ⅰ)∵四邊形ABCD是菱形,∴AC⊥BD.
又∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD.
又∵PA∩AC=A,∴BD⊥平面PAC.
∵PC?平面PAC,∴BD⊥PC…(6分)
(Ⅱ)依題意,知平面PAD⊥平面ABCD,平面PAD與平面ABCD的交線為AD,
過點B作BM⊥AD,垂足為M,則BM⊥平面PAD.
在平面PAD內(nèi)過M作MN⊥PD,垂足為N,連BN,
則PD⊥平面BMN,
∴∠BNM為二面角A-PD-B的平面角.…(9分)
∵AB=AD,∠BAD=60°,
BM=
3
2
AB=
3
,DM=1.…(10分)
又∵PA=AB,得MN=
2
2
,∴BN=
14
2
.…(11分)
∴Rt△BMN中,cos∠BNM=
MN
BN
=
2
2
14
2
=
7
7

即二面角A-PD-B的余弦值為
7
7
.…(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案