【題目】設(shè)橢圓 1(a> )的右焦點為F,右頂點為A,已知 ,其中O為原點,e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點M,與y軸交于點H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.
【答案】
(1)
解:由 ,
得 + = ,
即 = ,
∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.
∴橢圓方程為 ;
(2)
解:由已知設(shè)直線l的方程為y=k(x﹣2),(k≠0),
設(shè)B(x1,y1),M(x0,k(x0﹣2)),
∵∠MOA=∠MAO,
∴x0=1,
再設(shè)H(0,yH),
聯(lián)立 ,得(3+4k2)x2﹣16k2x+16k2﹣12=0.
△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.
由根與系數(shù)的關(guān)系得 ,
∴ , ,
MH所在直線方程為y﹣k(x0﹣2)=﹣ (x﹣x0),
令x=0,得yH=(k+ )x0﹣2k,
∵BF⊥HF,
∴ ,
即1﹣x1+y1yH=1﹣ [(k+ )x0﹣2k]=0,
整理得: =1,即8k2=3.
∴k=﹣ 或k=
【解析】(1)由題意畫出圖形,把|OF|、|OA|、|FA|代入 + = ,轉(zhuǎn)化為關(guān)于a的方程,解方程求得a值,則橢圓方程可求;
(2)由已知設(shè)直線l的方程為y=k(x﹣2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出MH所在直線方程,求出H的坐標(biāo),由BF⊥HF,得 ,整理得到M的坐標(biāo)與k的關(guān)系,由∠MOA=∠MAO,得到x0=1,轉(zhuǎn)化為關(guān)于k的等式求得k的值.
本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,體現(xiàn)了“整體運算”思想方法和“設(shè)而不求”的解題思想方法,考查運算能力,是難題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知MOD函數(shù)是一個求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 的二次函數(shù)
(Ⅰ)設(shè)集合和,分別從集合中隨機取一個數(shù)作為和, 在區(qū)間上是增函數(shù)的概率.
(Ⅱ)設(shè)點是區(qū)域內(nèi)的隨機點,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年,在國家創(chuàng)新驅(qū)動戰(zhàn)略下,北斗系統(tǒng)作為一項國家高科技工程,一個開放型的創(chuàng)新平臺,1400多個北斗基站遍布全國,上萬臺套設(shè)備組成星地“一張網(wǎng)”,國內(nèi)定位精度全部達到亞米級,部分地區(qū)達到分米級,最高精度甚至可以達到厘米或毫米級。最近北斗三號工程耗資9萬元建成一小型設(shè)備,已知這臺設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費為元,使用它直至“報廢最合算”(所謂“報廢最合算”是指使用這臺儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=3;
(3)設(shè)a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點分別到兩定點連線的斜率的乘積為,設(shè)的軌跡為曲線分別為曲線的左、右焦點,則下列命題中:
(1)曲線的焦點坐標(biāo)為;
(2)若,則;
(3)當(dāng)時,△的內(nèi)切圓圓心在直線上;
(4)設(shè),則的最小值為;
其中正確命題的序號是:______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線=的焦點為坐標(biāo)原點, 是拋物線上異于的兩點.
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過軸上一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系xoy中,圓C的方程為(x+6)2+y2=25.
(1)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(2)直線l的參數(shù)方程是 (t為參數(shù)),l與C交于A、B兩點,∣AB∣= ,求l的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銅仁市某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
K2=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com