已知點(diǎn)A(-
3
,0),B(
3
,0),動(dòng)點(diǎn)C到A、B兩點(diǎn)的距離之差的絕對(duì)值為2,點(diǎn)C的軌跡與直線 y=x-2交于D、E兩點(diǎn),求線段DE的中點(diǎn)坐標(biāo)及其弦長(zhǎng)DE.
分析:利用雙曲線的定義可得點(diǎn)C的軌跡是以A、B為焦點(diǎn)的雙曲線,由2a=2,2c=2
3
,求得雙曲線的標(biāo)準(zhǔn)方程;把直線 y=x-2代入雙曲線方程化簡(jiǎn)可得x1+x2=-4,x1•x2=6,進(jìn)而利用弦長(zhǎng)公式求得DE.
解答:解:∵|CB|-|CA|=2<2
3
=|AB|,∴點(diǎn)C的軌跡是以A、B為焦點(diǎn)的雙曲線,2a=2,2c=2
3
,
∴a=1,c=
3
,∴b=
2
,∴點(diǎn)C的軌跡方程為 x2-
y2
2
=1.
把直線 y=x-2代入 x2-
y2
2
=1化簡(jiǎn)可得 x2+4x-6=0,△=16-4(-6)=40>0,
設(shè)D、E兩點(diǎn)的坐標(biāo)分別為(x1,y1 )、(x2,y2),∴x1+x2=-4,x1•x2=-6.
∴線段DE的中點(diǎn)坐標(biāo)為M(-2,4),DE=
1+1
•|x1-x2|=
2
(x1 +x2)2-4x1 •x2
 
=
2
16-4(-6)
=4
5
點(diǎn)評(píng):本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)、弦長(zhǎng)公式的應(yīng)用,利用弦長(zhǎng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P到A的距離與到B的距離之比為2.
(1)求P點(diǎn)的軌跡E的方程;
(2)當(dāng)m為何值時(shí),直線l:mx+(2m-1)y-5m+1=0被曲線E截得的弦最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)已知點(diǎn)A(-3,0)和圓O:x2+y2=9,AB是圓O的直徑,M和N是AB的三等分點(diǎn),P(異于A,B)是圓O上的動(dòng)點(diǎn),PD⊥AB于D,
PE
ED
(λ>0)
,直線PA與BE交于C,則當(dāng)λ=
1
8
1
8
時(shí),|CM|+|CN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-3,0,-4),點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,則|AB|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(3,0),B(-
3
,1),C(cosa,sina),O(0,0),若|
OA
+
OC
|=
13
,a∈(0,π),則
OB
OC
的夾角為( 。
A、
π
6
B、
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)過原點(diǎn)O作直線l的垂線,垂足為H,若動(dòng)點(diǎn)M0滿足2
OM
=3
OH
,當(dāng)φ變化時(shí),求點(diǎn)M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案