2.已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)當(dāng)方程f(x)-4a=0在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上有兩個(gè)不同的根時(shí),求實(shí)數(shù)a的取值范圍.

分析 (1)由條件利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性求得f(x)的最小正周期.
(2)由題意,函數(shù)f(x)的圖象和直線y=4a在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上有兩個(gè)不同的交點(diǎn),由于f(x)在[-$\frac{π}{4}$,-$\frac{π}{12}$]上是減函數(shù),在[-$\frac{π}{12}$,$\frac{π}{4}$]上是增函數(shù),而f(-$\frac{π}{4}$)=-$\frac{1}{4}$,f(-$\frac{π}{12}$)=-$\frac{1}{2}$,f($\frac{π}{4}$)=$\frac{1}{4}$,可得4a>-$\frac{1}{2}$,且4a≤-$\frac{1}{4}$,求得a的范圍.

解答 解:(1)由已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$•$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
故函數(shù)的最小正周期為$\frac{2π}{2}$=π.
(2)當(dāng)方程f(x)-4a=0在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上有兩個(gè)不同的根時(shí),
等價(jià)于函數(shù)f(x)的圖象和直線y=4a在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上有兩個(gè)不同的交點(diǎn),
由于f(x)在[-$\frac{π}{4}$,-$\frac{π}{12}$]上是減函數(shù),在[-$\frac{π}{12}$,$\frac{π}{4}$]上是增函數(shù),而f(-$\frac{π}{4}$)=-$\frac{1}{4}$,f(-$\frac{π}{12}$)=-$\frac{1}{2}$,f($\frac{π}{4}$)=$\frac{1}{4}$,
故4a>-$\frac{1}{2}$,且4a≤-$\frac{1}{4}$,求得-$\frac{1}{8}$<a≤-$\frac{1}{16}$.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,方程根的存在性以及個(gè)數(shù)判斷,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(-x,y-1),且$\overrightarrow{a}$⊥$\overrightarrow$,若x,y為正數(shù),則$\frac{2}{3x}$+$\frac{4}{y}$的最小值是(  )
A.$\frac{5}{3}$B.$\frac{8}{3}$C.9D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知定義在R上的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)設(shè)g(x)=f(x)+1,h(x)=lnx
①判斷g(x)的單調(diào)性并說(shuō)明理由;
②若g(s)=h(t),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)函數(shù)f(x)=-x2+2x+3,x∈[0,3]的最大值和最小值分別是M,m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若圓心在x軸上,半徑為$\sqrt{5}$的圓C位于y軸左側(cè),且被直線x+2y=0截得的弦長(zhǎng)為4,則圓C的方程是( 。
A.${(x-\sqrt{5})^2}+{y^2}=5$B.${(x+\sqrt{5})^2}+{y^2}=5$C.(x-5)2+y2=5D.(x+5)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點(diǎn),若過(guò)點(diǎn)A,B且斜率分別為-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的兩直線交于點(diǎn)P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在空間四邊形ABCD中,AC,BD為其對(duì)角線,E,F(xiàn),G,H分別為AC,BC,BD,AD上的點(diǎn),若四邊形EFGH為平行四邊形,求證:AB∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.存在實(shí)數(shù)x使得不等式|x+3|+|x-1|≤22a-3•2a成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1]∪[4,+∞)B.[2,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求函數(shù)f(x)=2sin3x+3|sin4x|的最小正周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案