如圖,在側(cè)棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F是平面B1C1E與直線AA1的交點(diǎn).

(1)證明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1與平面B1C1EF所成的角的正弦值.
(1)見(jiàn)解析  (2)

(1)證明:①因?yàn)镃1B1∥A1D1,C1B1?平面ADD1A1,
所以C1B1∥平面A1D1DA.
又因?yàn)槠矫鍮1C1EF∩平面A1D1DA=EF,
所以C1B1∥EF,所以A1D1∥EF.
②因?yàn)锽B1⊥平面A1B1C1D1,所以BB1⊥B1C1.
又因?yàn)锽1C1⊥B1A1,所以B1C1⊥平面ABB1A1,
所以B1C1⊥BA1.
在矩形ABB1A1中,F是AA1的中點(diǎn),
tan∠A1B1F=tan∠AA1B=,
即∠A1B1F=∠AA1B,
故BA1⊥B1F.
所以BA1⊥平面B1C1EF.
(2)解:設(shè)BA1與B1F交點(diǎn)為H,連接C1H.
由(1)知BA1⊥平面B1C1EF,
所以∠BC1H是BC1與平面B1C1EF所成的角.
在矩形AA1B1B中,AB=,AA1=2,得BH=.
在Rt△BHC1中,BC1=2,BH=,得
sin∠BC1H==.
所以BC1與平面B1C1EF所成角的正弦值是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN平面ABCD,E,F(xiàn)分別為MA,DC的中點(diǎn),求證:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四面體PABC中,PC⊥AB,PA⊥BC,點(diǎn)D,E,F,G分別是棱AP,AC,BC,PB的中點(diǎn).

(1)求證:DE∥平面BCP.
(2)求證:四邊形DEFG為矩形.
(3)是否存在點(diǎn)Q,到四面體PABC六條棱的中點(diǎn)的距離相等?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分別為DC、BC的中點(diǎn).

(1)求證:平面FGH∥平面BDE;
(2)求證:平面ACF⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

由平面α外一點(diǎn)P引平面的三條相等的斜線段,斜足分別為A、B、C,O為△ABC的外心,求證:OP⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)表示直線,表示不同的平面,則下列命題中正確的是
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則;②若,則;
③若,則;   ④若,則
其中正確命題有_____________.(填上你認(rèn)為正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.

(1)求棱AA1與BC所成的角的大小;
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P、Q,平面α,將命題“P∈α,QαPQα”改成文字?jǐn)⑹鍪莀_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案