已知函數(shù).
(1)若在定義域上為增函數(shù),求實數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值.
(1);(2)詳見解析
【解析】
試題分析:(1)將函數(shù)在定義域上為增函數(shù)轉(zhuǎn)化為不等式在定義域上恒成立的問題去處理,并借助參數(shù)分離法求參數(shù)的取值范圍;(2)對的范圍進(jìn)行分類討論,確定函數(shù)在上的單調(diào)性,進(jìn)而確定函數(shù)在上的最小值。
試題解析:(1)因為函數(shù),
所以函數(shù)的定義域為. 1分
且. 2分
若在定義域上是增函數(shù),
則在上恒成立. 3分
即在上恒成立,所以. 4分
由已知,
所以實數(shù)的取值范圍為. 5分
(2)①若,由(1)知,函數(shù)在區(qū)間上為增函數(shù).
所以函數(shù)在區(qū)間上的最小值為. 6分
②若,由于,
所以函數(shù)在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù). 7分
(。┤,即時,,
函數(shù)在區(qū)間上為增函數(shù),
所以函數(shù)在的最小值為. 9分
(ⅱ)若,即時,
函數(shù)在區(qū)間為減函數(shù),在上為增函數(shù),
所以函數(shù)在區(qū)間上的最小值為. 11分
(ⅲ)若,即時,,
函數(shù)在區(qū)間上為減函數(shù),
所以函數(shù)在的最小值為. 13分
綜上所述,當(dāng)且時,函數(shù)在區(qū)間上的最小值為.
當(dāng)時,函數(shù)在區(qū)間的最小值為.
當(dāng)時,函數(shù)在區(qū)間上的最小值為. 14分
考點:分離參數(shù)法解決不等式恒成立問題,分類討論法求函數(shù)的最值
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com