(本題滿分12分)已知橢圓的離心率為,
直線與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線過(guò)點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段PF2的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積的最小值.
(1)(2)(3)
【解析】(Ⅰ)
相切
∴橢圓C1的方程是 …………3分
(Ⅱ)∵M(jìn)P=MF2,∴動(dòng)點(diǎn)M到定直線的距離等于它到定點(diǎn)F2(2,0)的距離, ∴動(dòng)點(diǎn)M的軌跡C是以為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線
∴點(diǎn)M的軌跡C2的方程為 …………6分
(Ⅲ)當(dāng)直線AC的斜率存在且不為零時(shí),設(shè)直線AC的斜率為k,
,則直線AC的方程為
聯(lián)立
所以
….8分
由于直線BD的斜率為代換上式中的k可得
∵,
∴四邊形ABCD的面積為……..10分
由
所以時(shí)取等號(hào). …………11分
易知,當(dāng)直線AC的斜率不存在或斜率為零時(shí),四邊形ABCD的面積
綜上可得,四邊形ABCD面積的最小值為 …………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線(是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn),向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com