【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點C作圓O的切線交BA的延長線于點F.
(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長.
【答案】
(1)證明:如圖所示,連接BE.
∵AE是⊙O的直徑,∴∠ABE=90°.
又∠E與∠ACB都是 所對的圓周角,
∴∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,
∴AB:AD=AE:AC,
∴ABAC=ADAE.
又AB=BC,
∴BCAC=ADAE.
(2)解:∵CF是⊙O的切線,
∴CF2=AFBF,
∵AF=2,CF=2 ,
∴(2 )2=2BF,解得BF=4.
∴AB=BF﹣AF=2.
∵∠ACF=∠FBC,∠CFB=∠AFC,
∴△AFC∽△CFB,
∴AF:FC=AC:BC,
∴AC= = .
∴cos∠ACD= ,
∴sin∠ACD= =sin∠AEB,
∴AE= .
【解析】(1)如圖所示,連接BE.由于AE是⊙O的直徑,可得∠ABE=90°.利用∠E與∠ACB都是 所對的圓周角,可得∠E=∠ACB.進而得到△ABE∽△ADC,即可得到.(2)利用切割線定理可得CF2=AFBF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,進而根據(jù)sin∠ACD=sin∠AEB,即可得出答案.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分) 已知P(3,2),一直線過點P,
①若直線在兩坐標軸上截距之和為12,求直線的方程;
②若直線與x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)今年初用72萬元購買一套新設備用于生產(chǎn),該設備第一年需各種費用12萬元,從第二年起,每年所需費用均比上一年增加4萬元,該設備每年的總收入為50萬元,設生產(chǎn)x年的 盈利總額為y萬元.寫出y與x的關系式;
①經(jīng)過幾年生產(chǎn),盈利總額達到最大值?最大值為多少?
②經(jīng)過幾年生產(chǎn),年平均盈利達到最大值?最大值為多少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.
(1)若商店一天購進該商品10件,求當天的利潤y(單位:元)關于當天需求量n(單位:件,n∈N)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,記“當天的利潤在區(qū)間[400,550]”為事件A,求P(A)的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0對任意的θ∈(0, )恒成立,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:,直線 ,過的一條動直線與直線相交于N,與圓C相交于P,Q兩點,M是PQ中點.
(1)當時,求直線的方程;
(2)設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com