設
分別是橢圓
的左右焦點.
(1)若M是該橢圓上的一個動點,求
的最大值和最小值;
(2)設過定點(0,2)的直線
與橢圓交于不同的兩點A、B,且
為鈍角,(其中O為坐標原點),求直線
的余斜率
的取值范圍。
(1)由條件知道兩焦點坐標為
、
,
設M(x,y),
、
=
點M在橢圓上,故有
,所以
的取值范圍是
(2)令直線
的方程為
,
、
由
得
曲
,得出
由于
為鈍角,故
=
得
綜上,
,所以k的取值范圍是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
如圖,橢圓
過點
,其左、右焦點分別為
,離心率
,
是橢圓右準線上的兩個動點,且
.
(1)求橢圓的方程;
(2)求
的最小值;
(3)以
為直徑的圓
是否過定點?
請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
的左右焦點分別為
、
,
是橢圓
上的一點,且
,坐標原點
到
直線
的距離為
.
(1)求橢圓
的方程;
(2) 設
是橢圓
上的一點,過點
的直線
交
軸于點
,交
軸于點
,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓方程為
(
)
,拋物線方程為
.過拋物線的焦點作
軸的垂線,與拋物線在第一象限的交點為
,拋物線在點
處的切線經過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設
為橢圓上的動點,由
向
軸作垂線
,垂足為
,且直線
上一點
滿足
,求點
的軌跡方程,并說明軌跡是什么曲線?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知菱形
的頂點
在橢圓
上,對角線
所在直線的斜率為1.
(1)當直線
過點
時,求直線
的方程;
(2)當
時,求菱形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.已知中心在原點O,焦點在
軸上,離心率為
的橢圓;以橢圓的頂點為頂點構成的四邊形的面積為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若A\B分別是橢圓長軸的左.右端點,動點M滿足
,直線MA交橢圓于P,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
中,以點M(-1,2)為中點的弦所在的直線斜率為 ▲
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
的圖象在點
處的切線恰好與
垂直,則(Ⅰ)
的值分別為
1,3 ;(Ⅱ)若
在
上單調遞增,則
m的取值范
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知橢圓的標準方程為
,過點
的雙曲線的實軸的兩端點恰好是橢圓的兩焦點,求雙曲線的標準方程.
查看答案和解析>>