分別是橢圓的左右焦點.
(1)若M是該橢圓上的一個動點,求的最大值和最小值;
(2)設過定點(0,2)的直線與橢圓交于不同的兩點A、B,且為鈍角,(其中O為坐標原點),求直線的余斜率的取值范圍。

(1)由條件知道兩焦點坐標為、
設M(x,y),、
=
點M在橢圓上,故有,所以的取值范圍是
(2)令直線的方程為,、

,得出

由于為鈍角,故

=

綜上,,所以k的取值范圍是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,橢圓過點,其左、右焦點分別為,離心率,是橢圓右準線上的兩個動點,且
(1)求橢圓的方程;
(2)求的最小值;
(3)以為直徑的圓是否過定點?
請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左右焦點分別為、,是橢圓上的一點,且,坐標原點直線的距離為
(1)求橢圓的方程;
(2) 設是橢圓上的一點,過點的直線軸于點,交軸于點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為,拋物線方程為.過拋物線的焦點作軸的垂線,與拋物線在第一象限的交點為,拋物線在點處的切線經過橢圓的右焦點. 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設為橢圓上的動點,由軸作垂線,垂足為,且直線上一點滿足,求點的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

已知菱形的頂點在橢圓上,對角線所在直線的斜率為1.
(1)當直線過點時,求直線的方程;
(2)當時,求菱形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知中心在原點O,焦點在軸上,離心率為的橢圓;以橢圓的頂點為頂點構成的四邊形的面積為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若A\B分別是橢圓長軸的左.右端點,動點M滿足,直線MA交橢圓于P,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中,以點M(-1,2)為中點的弦所在的直線斜率為     ▲     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

 已知函數(shù)的圖象在點處的切線恰好與垂直,則(Ⅰ)的值分別為  1,3  ;(Ⅱ)若上單調遞增,則m的取值范

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的標準方程為,過點的雙曲線的實軸的兩端點恰好是橢圓的兩焦點,求雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案