數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,滿足關(guān)系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(I)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1bn-1
)
(n=2,3,4…).求bn;
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
分析:(1)由3tSn-(2t+3)Sn-1=3t,可得3tsn+1-(2t+3)Sn =3t (n≥2),兩式相減得3tan+1-(2t+3)an =0.化簡變形可得
an+1
an
=
2t+3
3t
(n≥1),故數(shù)列{an}為等比數(shù)列,
從而證得數(shù)列{bn}是以 b1=1為首項(xiàng),以d=
2
3
為公差的等差數(shù)列,從而求得 bn=
2
3
n+
1
3

(2)化簡 Tn 為  b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=2d (b2+b4+…+b2n)=2×
2
3
[n•
5
3
+
n(n-1)
2
• 
4
3
],運(yùn)算求得結(jié)果.
解答:解:(1)證明:∵3tSn-(2t+3)Sn-1=3t,∴3tsn+1-(2t+3)Sn =3t (n≥2),兩式相減得3tan+1-(2t+3)an =0.
又t>0,∴
an+1
an
=
2t+3
3t
 (n≥2),又當(dāng)n=2時(shí),3ts2-(2t+3)s1=3t,
即3t (a1+a2)-(2t+3)a1=3t,得 a2=
2t+3
3t
,即
a2
a1
=
2t+3
3t
,∴
an+1
an
=
2t+3
3t
(n≥1),∴數(shù)列{an}為等比數(shù)列.
由已知得f(n)=
2t+3
3t
,∴bn=f(
1
bn-1
)
=
2
bn-1
+3
3
bn-1
=bn-1+
2
3
 (n≥2).
∴數(shù)列{bn}是以 b1=1為首項(xiàng),以d=
2
3
為公差的等差數(shù)列,故 bn=
2
3
n+
1
3

(2)Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1
=2d (b2+b4+…+b2n)=2×
2
3
[n•
5
3
+
n(n-1)
2
• 
4
3
]=-
8
9
n2
-
4n
3
點(diǎn)評(píng):本題主要考查利用數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式,等差關(guān)系、等比關(guān)系的確定,等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和是Sn,存在常數(shù)A,B使an+Sn=An+B對(duì)任意正整數(shù)n都成立.
(1)設(shè)A=0,求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}是等差數(shù)列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)設(shè)A>0,A≠1,且
an
an+1
≤M
對(duì)任意正整數(shù)n都成立,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=a(a∈R),且an+1=
an-3
-an+4
an>3時(shí)
an≤3時(shí)
n=1,2,3,….
(I)若0<a<1,求a2,a3,a4,a5
(II)若0<an<4,證明:0<an+1<4;
(III)若0<a≤2,求所有的正整數(shù)k,使得對(duì)于任意n∈N*,均有an+k=an成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bn=an+1-an(n∈N*),若b3=-2,b10=12,則a8=( 。
A、0B、3C、8D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知數(shù)列{an}是以3為公差的等差數(shù)列,Sn是其前n項(xiàng)和,若S10是數(shù)列{Sn}中的唯一最小項(xiàng),則數(shù)列{an}的首項(xiàng)a1的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=
Sn
+
sn-1
(n≥2).
(Ⅰ)求證:{
Sn
}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,若對(duì)任意的n∈N*,不等式4Tn<a2-a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案