19.從1,2,3,4,5,6,7中任取一個(gè)數(shù),則取出的數(shù)大于3或能被3整除的概率為$\frac{5}{7}$.

分析 先計(jì)算出所有基本事件的個(gè)數(shù),并計(jì)算出滿足條件的基本事件個(gè)數(shù),然后代入古典概型公式,即可得到答案.

解答 解:從1,2,3,4,5,6,7中任取一個(gè)數(shù),共7種情況,則取出的數(shù)大于3或能被3整除的為3,4,5,6,7,共5種,
則取出的數(shù)大于3或能被3整除的概率P=$\frac{5}{7}$,
故答案為:$\frac{5}{7}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是古典概型,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知f(x)=sinx+1,g(x)=mex,若?x∈[0,π],都有f(x)≤g(x)成立,則m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知,y與x呈線性相關(guān)關(guān)系,
(1)試求線性回歸方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
注:$\left.\begin{array}{l}{∧}\\\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\\end{array}\right.$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,內(nèi)角A、B、C的對(duì)邊為a、b、c.且$\frac{cosA}{cosC}=\frac{a}{2b-c}$
(1)求角A的值;
(2)設(shè)a=2,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)經(jīng)過(guò)點(diǎn)A(-1,8),B(4,-2)的直線方程
(2)求圓心(-1,1),半徑r=3的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,$b=\sqrt{3},c=3,B={30°}$,則邊a=$\sqrt{3}$或2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}為等差數(shù)列,若a2+a3+a4=π,則cos(a1+a5)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}中,${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$,則S4=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)為f(x)的導(dǎo)函數(shù),求g(x)單調(diào)區(qū)間;
(2)已知函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案