已知2m=6,則log26的結果為
 
考點:指數(shù)式與對數(shù)式的互化
專題:函數(shù)的性質及應用
分析:通過已知條件求出m,代入所求表達式求解即可.
解答: 解:2m=6,所以m=log26,則log26的結果為m.
故答案為:m.
點評:本題考查指數(shù)式與對數(shù)式的互化,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三角形的三條中線交于一點G,且G將每條中線分為2:1,若三角形三個頂點為A(x1,y1),B(x2,y2),C(x3,y3).求證:
(1)G的坐標為(
x1+x2+x3
3
,
y1+y2+y3
3
);
(2)
GA
+
GB
+
GC
=
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-2(2m-1)x+5m2-2m+4在[0,1]上的最小值為g(m);
(1)求g(m)的解析式;
(2)若m∈[-2,0],設g(m)的最小值為M,計算log19
5
(1+log5M)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在面積為7的△ABC的邊AB上任取一點P,則△PBC的面積小于
7
3
的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球體的體積公式為V=
4
3
πr3
,其中r為球的半徑.
(1)試將半徑r表示為體積V的函數(shù);
(2)求氣球體積由V1=0cm3增加到V2=36πcm3時氣球的平均膨脹率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax3+bx2+cx+d(x∈R)的圖象經(jīng)過原點,且f(-1)=2和f(1)=-2分別是函數(shù)f(x)的極大值和極小值.
(Ⅰ)求a,b,c,d;
(Ⅱ)過點A(1,-3)作曲線y=f(x)的切線,求所得切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
+
a
x2
(a∈R).
(1)若a=1,求函數(shù)f(x)的極值;
(2)若f(x)在[1,+∞)內(nèi)為單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(3)對于n∈N*,求證:
n
i=1
i
(i+1)2
<ln(n+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x+3-x2>0的解集是( 。
A、{x|-1<x<3}
B、{x|x>3或x<-1}
C、{x|-3<x<1}
D、{x|x>1或x<-3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增等比數(shù)列{an}滿足:a2+a3+a4=14,且a3+1是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和為Sn,求使Sn<63成立的正整數(shù)n的最大值.

查看答案和解析>>

同步練習冊答案