5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{2x-1,x≥1}\end{array}\right.$,則f(-2)+f(2)=(  )
A.3B.6C.5D.12

分析 根據(jù)函數(shù)的解析式,求出f(-2),f(2)的值即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{2x-1,x≥1}\end{array}\right.$,
∴f(-2)=1+2=3,f(2)=3,
則f(-2)+f(2)=6,
故選:B.

點(diǎn)評 本題考查了分段函數(shù)以及函數(shù)求值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有一些正整數(shù)排成的倒三角,從第二行起,每個(gè)數(shù)字等于“兩肩”數(shù)的和,最后一行只有一個(gè)數(shù)M,那么M=576.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$則f(f($\frac{1}{2}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知奇函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=-2x,則f(log210)等于$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$a={log_2}0.3,b={2^{0.3}},c={0.3^2}$,則執(zhí)行如圖所示的程序框圖,輸出的是( 。
A.cB.bC.aD.$\frac{a+b+c}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,某校高一(1)班全體男生的一次數(shù)學(xué)測試的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù)及分?jǐn)?shù)在[80,90)之間的男生人數(shù);
(2)根據(jù)頻率分布直方圖,估計(jì)該班全體男生的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).(3)從分?jǐn)?shù)在[80,100]中抽取兩個(gè)男生,求抽取的兩男生分別來自[80,90)、[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{2}{{a}_{n+1}+1}$,a2=1,則S7等于( 。
A.112B.113C.120D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)右頂點(diǎn)A且與其中一條漸近線平行,又與另一條漸近線交于點(diǎn)B,滿足三角形AOB的面積為$\frac{{a}^{2}}{4}$,則該雙曲線的離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(cos(x-$\frac{π}{6}$),-1),$\overrightarrow$=(cos(x-$\frac{π}{6}$),cos2x),x∈R,函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$
(1)求函數(shù)f(x)圖象的對稱中心
(2)若x∈[-$\frac{π}{4}$,$\frac{π}{2}$],求函數(shù)f(x)的最大值和最小值,并求出f(x)取得最值時(shí)x的大小.

查看答案和解析>>

同步練習(xí)冊答案