已知拋物線C:和定點P(1,2),A、B為拋物線C上的兩個動點,且直線PA和PB的斜率為非零的互為相反數(shù).
(I)求證:直線AB的斜率是定值;
(II)若拋物線C在A、B兩點處的切線相交于點M,求M的軌跡方程;
(III)若A′與A關(guān)于y軸成軸對稱,求直線A′B與y軸交點P的縱坐標(biāo)的取值范圍.
【答案】分析:(I)設(shè)點A(xA,yA),B(xB,yB)(xA≠xB),直線PA的斜率為k(k≠0),則直線PB的斜率為-k,直線PA的方程為y-2=k(x-1),由消y,得2x2-kx+k-2=0,再由韋達(dá)定理可以證明直線AB的斜率是定值;
(II)設(shè)點M(x,y)由y=2x2,得y'=4x,所以直線MA的方程為:y-yA=4xA(x-xA),同理可得直線MB的方程,所以,由此能求出動點M的軌跡方程.
(III)由已知,,所以kA'B=-2k,則直線A'B的方程為y-yB=kA'B(x-xB),由此能求出交點P的縱坐標(biāo)的取值范圍.
解答:解:(I)設(shè)點A(xA,yA),B(xB,yB)(xA≠xB),直線PA的斜率為k(k≠0),
則直線PB的斜率為-k,直線PA的方程為y-2=k(x-1),
消y,得2x2-kx+k-2=0,
因為點P在曲線C上,
所以由韋達(dá)定理得,
所以A,同理B(),(2分)
(4分)
或由,同理,(2分)

又yA=2xA2,yB=2xB2,
∴yA-yB=2(xA+xB)(xA-xB),又xA≠xB,
.(4分)

(II)設(shè)點M(x,y)由y=2x2,得y'=4x,
所以直線MA的方程為:y-yA=4xA(x-xA),①
同理直線MB的方程為:y-yB=4xB(x-xB),②
由①②,得,③(6分)
把③代入①整理,得,
所以動點M的軌跡方程為x=-1(y<2且y≠-6.(8分)

(III)由已知,,所以kA'B=-2k,
則直線A'B的方程為y-yB=kA'B(x-xB),
即y-yB=-2k(x-xB),(10分)
令x=0整理,得y=
點P的縱坐標(biāo)的取值范圍是(-∞,-6)∪(-6,2).(12分)
點評:本題考查圓錐曲線和直線的位置關(guān)系和應(yīng)用,解題時要認(rèn)真審題,注意挖掘隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為
π
3
的直線n,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的方程;
(Ⅱ)若P為拋物線C上的動點,求
PM
PF
的最小值;
(Ⅲ)過l上的動點Q向⊙M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知拋物線C:y2=2px(p>0),直線l交此拋物線于不同的兩個點A
x1,y1
、B
x2y2

(1)當(dāng)直線l過點M
p,0
時,證明y1•y2為定值;
(2)當(dāng)y1y2=-p時,直線l是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由;
(3)如果直線l過點M
p,0
,過點M再作一條與直線l垂直的直線l'交拋物線C于兩個不同點D、E.設(shè)線段AB的中點為P,線段DE的中點為Q,記線段PQ的中點為N.問是否存在一條直線和一個定點,使得點N到它們的距離相等?若存在,求出這條直線和這個定點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知拋物線C:y2=2px(p>0),直線l交此拋物線于不同的兩個點A(x1,y1)、B(x2,y2))
(1)當(dāng)直線l過點M(-p,0)時,證明y1•y2為定值;
(2)當(dāng)y1y2=-p時,直線l是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由;
(3)記N(p,0),如果直線l過點M(-p,0),設(shè)線段AB的中點為P,線段PN的中點為Q.問是否存在一條直線和一個定點,使得點Q到它們的距離相等?若存在,求出這條直線和這個定點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點為F,⊙M的圓心在x軸的正半軸上,且與y軸相切,過原點O作傾斜角為
π3
的直線n,交l于點A,交⊙M于另一點B,且AO=OB=2.
(1)求⊙M和拋物線C的方程;
(2)過l上的動點Q向⊙M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案