選做題(考生只能從A、B、C題中選作一題)
A、已知直線(θ為參數(shù))相交于A、B兩點,則|AB|=
   
B、若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0有實根,則實數(shù)a的取值范圍為    
C、如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,
則PC=    cm.
【答案】分析:A、把圓的參數(shù)方程化為普通方程后,聯(lián)立直線和圓的方程,消去x得到關(guān)于y的一元二次方程,設(shè)出兩交點的坐標,把兩點坐標代入直線方程即可得到橫坐標之差的平方與縱坐標之差的平方的關(guān)系,由韋達定理求出縱坐標之差的平方,然后利用兩點間的距離公式即可求出|AB|的長;
B、由關(guān)于x的方程有實根得到根的判別式大于等于0,列出關(guān)于a的不等式,利用數(shù)軸上兩點間的距離公式,畫出數(shù)軸即可得到a的取值范圍;
C、連接OC,得到OC垂直于PC,因為OA等于OC,利用等邊對等角得到角PAC等于角ACO,利用三角形AOC的外角性質(zhì)可知角COP等于60°,即可得到角P等于30°,由圓的直徑等于6cm可得半徑OC等于3cm,根據(jù)30°角所對的直角邊等于斜邊的一半及勾股定理即可求出PC的長.
三道題選作一題即可.
解答:解:A、把圓的方程化為普通方程得:(x-2)2+(y-1)2=9,
聯(lián)立直線與圓的方程得,消去x得到:5y2-10y-4=0
設(shè)直線與圓的兩交點坐標分別為A(x1,y1),B(x2,y2),
而y1+y2=2,y1y2=-,所以(y1-y22=(y1+y22-4y1y2=,
把兩點代入直線方程得(x1-x22=4(y1-y22,
所以|AB|===6;
B、由題意可知△=16-4(|a-1|+|a+1|)≥0,
即|a-1|+|a+1|≤4,表示數(shù)軸上一點a到1和-1的距離之和小于4,畫出數(shù)軸如下:

所以a∈[-2,2];
C、連接OC,則OC⊥PC,
∵OA=OC,∴∠CAP=∠ACO=30°,
則∠COP=∠CAP+∠ACO=2∠CAP=60°,所以∠P=30°,
∵AB=6cm,∴OC=3cm,則OP=6cm,
所以PC==3cm.
故答案為:A:6;B:[-2,2];C:3
三道題選作一題即可.
點評:此題要求學生掌握直線與圓的位置關(guān)系,靈活運用韋達定理及兩點間的距離公式化簡求值,利用數(shù)形結(jié)合的數(shù)學思想解決實際問題,掌握圓及直角三角形的基本性質(zhì),是一道多知識的綜合題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選做題(考生只能從A、B、C題中選作一題)
A、已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
 

B、若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0有實根,則實數(shù)a的取值范圍為
 

C、如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,
則PC=
 
cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(考生只能從A、B、C題中選作一題)
A、(不等式證明選講)不等式|x-1|<|x|+1的解集為
 

B、(幾何證明選講)已知Rt△ABC的直角邊BC的長為3cm,以A為圓心直角邊AC為半徑的圓交BA于D點,當BD=1cm時,AC長為
 

C、(坐標系與參數(shù)方程)曲線
x=2+3cosθ
y=1+3sinθ
(θ為參數(shù))到直線x-3y+1=0距離為1.5的點有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點為C,點A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標系與參數(shù)方程選做題)
在極坐標系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省漢中市寧強縣天津高級中學高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:填空題

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實根,則a的取值范圍是   
B.(幾何證明選做題)
如圖,CD是圓O的切線,切點為C,點A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為   
C.(坐標系與參數(shù)方程選做題)
在極坐標系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年陜西省寶雞市金臺區(qū)高三質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:解答題

選做題(考生只能從A、B、C題中選作一題)
A、(不等式證明選講)不等式|x-1|<|x|+1的解集為   
B、(幾何證明選講)已知Rt△ABC的直角邊BC的長為3cm,以A為圓心直角邊AC為半徑的圓交BA于D點,當BD=1cm時,AC長為   
C、(坐標系與參數(shù)方程)曲線(θ為參數(shù))到直線x-3y+1=0距離為1.5的點有    個.

查看答案和解析>>

同步練習冊答案