精英家教網(wǎng)已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的余弦值;
(2)設(shè)點(diǎn)P在線段GH上,且
GPGH
,試確定λ的值,使得C1P的長度最短.
分析:(1)由題意建立坐標(biāo)系,求出平面EFH的法向量,利用對應(yīng)向量的數(shù)量積求出線面角的余弦值,再求其正弦值;
(2)由題意先求出P點(diǎn)的坐標(biāo),再求向量
C1P
的長度的平方,轉(zhuǎn)化為關(guān)于λ的一個一元二次函數(shù),當(dāng)取在對稱軸出有最小值.
解答:解:由題意,以D1為坐標(biāo)原點(diǎn),A1D1,D1C1,DD1為x,y,z軸建立直角坐標(biāo)系
精英家教網(wǎng),
可得E(2,0,6),F(xiàn)(0,2,6),H(6,6,4),A1(6,0,0).
(1)設(shè)平面EFH的法向量
n
=(1,x,y),∵
EF
=(-2,2,0),
EH
=(4,6,-2)
-2+2x=0
4+6x-2y=0
,求得
n
=(1,1,5);
A1H
=(0,6,4),∴cos<
n
,
A1H
>=
n
A1H
|
n
|  |
A1H
|
=
26
27
52
=
39
9
;
設(shè)A1H 與平面EF所成角θ,則cosθ=
1-
39
81
=
42
9
.(5分)
(2)由題意知,G(1,1,6),C1(0,6,0),
GH
=(5,5,-2),
GP
GH
,∴設(shè)
GP
GH
=(5λ,5λ,-2λ),解得P(5λ+1,5λ+1,-2λ+6),
C1P
=(5λ+1,5λ-5,-2λ+6),
C1P
2
=(5λ+1)2+(5λ-5)2+(2λ-6)2=54λ2-64λ+58,
當(dāng)λ=
16
27
時,C1P的長度取得最小值.(10分)
點(diǎn)評:本題用向量法求線面角的問題及求線段的最小值,只要用了向量的數(shù)量積和向量的長度;在求長度時轉(zhuǎn)化到了二次函數(shù)求最小值,考查了轉(zhuǎn)化思想和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點(diǎn)P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的余弦值;
(2)設(shè)點(diǎn)P在線段GH上,且數(shù)學(xué)公式,試確定λ的值,使得C1P的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高二(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點(diǎn)P在線段GH上,=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南京市高三數(shù)學(xué)綜合訓(xùn)練試卷(11)(解析版) 題型:解答題

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的余弦值;
(2)設(shè)點(diǎn)P在線段GH上,且,試確定λ的值,使得C1P的長度最短.

查看答案和解析>>

同步練習(xí)冊答案