設(shè)、為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).

(1)      若對(duì)任意,點(diǎn)在拋物線上,試問(wèn)當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程;

(2)      若點(diǎn)在橢圓上,試問(wèn):點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;

(3)      對(duì)(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問(wèn):是否存在一個(gè)定圓,使直線恒與圓相切. k*s*5*u

解:(1),-----------------------------------------------------2分

代入----------------------------------  4分

當(dāng)時(shí),點(diǎn) 在圓上-------------------------------------------5分

(2)在橢圓上,即

 

點(diǎn)在雙曲線上--------------------------------------------------------------------10分

(3)的方程為

設(shè)

 ----------------------------------------------------------------------------------------------12分

,------------14分

又原點(diǎn)到直線距離 ,即原點(diǎn)到直線的距離恒為

直線恒與圓相切。---------------------------------------------------------15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

設(shè)、為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).

若對(duì)任意,點(diǎn)在拋物線上,試問(wèn)當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程

若點(diǎn)在橢圓上,試問(wèn):點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;

對(duì)(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問(wèn):是否存在一個(gè)定圓,使直線恒與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇南京學(xué)大教育專修學(xué)校高二五月理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍的伸壓變換,則圓的作用下的新曲線的方程是       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

設(shè)、為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).

(1)       若對(duì)任意,點(diǎn)在拋物線上,試問(wèn)當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程;

(2)       若點(diǎn)在橢圓上,試問(wèn):點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;

(3)       對(duì)(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問(wèn):是否存在一個(gè)定圓,使直線恒與圓相切.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆永春一中、培元中學(xué)、季延中學(xué)和石光華僑聯(lián)中高三第一次統(tǒng)考數(shù) 題型:解答題

本題有(1)、(2)、(3)三個(gè)選考題,每題7份,請(qǐng)考生任選2題作答,滿分14分.

如果多做,則按所做的前兩題計(jì)分.

選修4系列(本小題滿分14分)

   (1)(本小題滿分7分)選修4-2:矩陣與變換

設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到倍,縱坐標(biāo)伸長(zhǎng)到倍的伸壓變換.

(Ⅰ)求矩陣的特征值及相應(yīng)的特征向量;

(Ⅱ)求逆矩陣以及橢圓的作用下的新曲線的方程.

(2) (本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程,曲線C的參數(shù)方程為為參數(shù)),求曲線C截直線l所得的弦長(zhǎng)

(3)(本小題滿分7分)選修4—5:不等式選講

已知,且、是正數(shù),求證:.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案