【題目】已知雙曲線 , )的左、右焦點分別為,過點作圓 的切線,切點為,且直線與雙曲線的一個交點滿足,設(shè)為坐標(biāo)原點,若,則雙曲線的漸近線方程為( )

A. B. C. D.

【答案】C

【解析】,,故點為線段的中點,連接的中位線,且,故,,故點在雙曲線的右支上 ,則在中,由勾股定理可得, ,解得,,故雙曲線的漸近線方程為,故選C.

【方法點晴】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系. 本題中,利用雙曲線的定義與幾何性質(zhì),以及構(gòu)造的齊次式,從而可求出漸近線的斜率,進(jìn)而求出漸近線方程的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點

1)求橢圓的方程;

2)若點是點軸上的垂足,延長交橢圓,求證: 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是矩形,側(cè)棱底面, 分別是的中點, .

(Ⅰ)求證: 平面;

(Ⅱ)求證: 平面

(Ⅲ)若, ,求三棱錐的體積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通項公式

(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).

(1)求他們選擇的項目所屬類別互不相同的概率;

(2)ξ3人中選擇的項目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在四邊形ABCD , 是邊長為4的正三角形,把沿AC折起到的位置,使得平面PAC平面ACD,如圖乙所示,分別為棱的中點.

1求證: 平面

2求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中曲線的方程是,上的動點,滿足為極點),點的軌跡為曲線,以極點為原點極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,( 為參數(shù)).

(Ⅰ)求曲線直角坐標(biāo)方程與直線的普通方程;

(Ⅱ)求點到直線的距離的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測試,某實驗中學(xué)初三(8)班的一次體育測試成績的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;

(Ⅱ)若要從分?jǐn)?shù)在之間的成績中任取兩個學(xué)生成績分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圖,在三棱柱中,平面平面,且均為正三角形.

(1)在上找一點,使得平面,并說明理由.

(2)若的面積為,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案