設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù).當x<0時,f'(x)g(x)+f(x)g'(x)>0,且g(-3)=0,則不等式
f(x)
g(x)
>0
的解集是(  )
分析:令F(x)=f(x)•g(x),則F′(x)>0,
解答:解:設(shè)F(x)=f (x)g(x),
當x<0時,?∵F′(x)=f′(x)g(x)+f (x)g′(x)>0,
∴F(x)在(-∞,0)上為增函數(shù);
∵F(-x)=f (-x)g (-x)=-f (x)•g (x)=-F(x),?
∴F(x)為R上的奇函數(shù),故F(x)在R上亦為增函數(shù).?
∵g(-3)=0,必有F(-3)=F(3)=0.?
構(gòu)造如圖的F(x)=f (x)g(x)的圖象,

可知F(x)>0的解集為(-3,0)∪(3,+∞).
f(x)
g(x)
>0?
f(x)•g(x)
g2(x)
>0?F(x)>0,
f(x)
g(x)
>0的解集就是F(x)>0的解集(-3,0)∪(3,+∞).
故選A.
點評:本題考查利用導數(shù)研究函數(shù)的單調(diào)性,考查構(gòu)造函數(shù)思想與數(shù)形結(jié)合思想及等價轉(zhuǎn)化思想的綜合運用,考查推理分析與作圖運算的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x),g(x)是實數(shù)集R上的奇函數(shù),{x|f(x)>0}={x|4<x<10},{x|g(x)>0}={x|2<x<5},則集合{x|f(x)g(x)>0}=
(4,5)∪(-5,-4)
(4,5)∪(-5,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-1在[a,b]上是“親密函數(shù)”,則b-a的最大值是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案