精英家教網 > 高中數學 > 題目詳情

(1)設,求的值;
(2)已知,且,求的值.

(1);(2).

解析試題分析:(1)將所求式分子1換成,然后分子分母同除以,將其轉化為關于的式子再進行計算即可,本題若由,去求出,則需要討論,若想不到用代替1,則可原式分子分母同除以,然后再考慮求出,顯然這兩種方法較為麻煩;(2)此類給三角函數值求三角函數值的問題一般是通過考察條件中的角和問題中的角的關系,然后通過誘導公式、同角三角函數關系式、和差角公式進行計算.注意到,由誘導公式知,結合條件由同角三角函數關系式可求出,注意公式使用時要考察角的范圍從而確定三角函數值的符號.
試題解析:(1)原式=            3分
                7分
(2)由,得,
       10分

所以                      14分
考點:同角三角函數的關系、三角函數的誘導公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設向量,.(1)若,求的值;
(2)設函數,求的最大、最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數的圖像關于直線對稱,求的最小值;
(2)若存在,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,一個半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,現要將此鐵皮剪出一個等腰三角形,其底邊.

(1)設,求三角形鐵皮的面積;
(2)求剪下的鐵皮三角形的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中,角所對的邊分別為且滿足.
(I)求角的大小;
(II)求的最大值,并求取得最大值時角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某同學在一次研究性學習中發(fā)現,以下五個式子的值都等于同一個常數.
;

;
;
.
(1)從上述五個式子中選擇一個,求出常數
(2)根據(1)的計算結果,將該同學的發(fā)現推廣為一個三角恒等式,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.求:
(I)求函數的最小正周期和單調遞增區(qū)間;
(II)求函數在區(qū)間上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)求函數的最大值和最小值;
(2)設函數上的圖象與軸的交點從左到右分別為,圖象的最高點為,
的夾角的余弦.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量,,設函數.
(1)求函數的最大值;
(2)在中,角為銳角,角、的對邊分別為、、,,且的面積為3,,求的值.

查看答案和解析>>

同步練習冊答案