15.下列函數(shù)中,在定義域上既是奇函數(shù)又存在零點的函數(shù)是( 。
A.y=-$\sqrt{x}$B.y=$\frac{1}{x}$C.y=ex-e-xD.y=cosx

分析 根據(jù)函數(shù)奇偶性的定義、零點的判斷方法進行判斷即可.

解答 解:A.y=$\sqrt{x}$為非奇非偶函數(shù),不滿足條件.
B.y=$\frac{1}{x}$不存在零點,不滿足條件.
C.y=ex-e-x為奇函數(shù),由y=ex-e-x=0,解得x=0,存在零點,滿足條件.
D.y=cosx為偶函數(shù),不滿足條件.
故選:C.

點評 本題主要考查函數(shù)奇偶性的判斷以及函數(shù)零點的求解,要求熟練掌握常見函數(shù)的奇偶性的性質(zhì).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.某一天,一船從南岸出發(fā),向北岸橫渡.根據(jù)測量,這一天水流速度為3km/h,方向正東,風的方向為北偏西30°,受風力影響,靜水中船的漂行速度為3km/h,若要使該船由南向北沿垂直與河岸的方向以2$\sqrt{3}$km/h的速度橫渡,求船本身的速度大小及方向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設復數(shù)z=1+i(i是虛數(shù)單位),則$\frac{2}{z}$+z=( 。
A.2B.2-iC.2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知A={x|$\frac{x+1}{x-1}$≤0},B={-1,0,1},則A∩B=(  )
A.{-1,0,1}B.{-1,0}C.{0,1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sin(2x),將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有30個零點,在所有滿足上述條件的[a,b]中,則b-a的最小值為( 。
A.$\frac{42π}{3}$B.$\frac{40π}{3}$C.$\frac{43π}{3}$D.$\frac{45π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在二項式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展開式中,第5項的二項式系數(shù)最大,則展開式中的常數(shù)項是( 。
A.1972B.448C.896D.224

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在2+$\sqrt{7}$,$\frac{2}{7}$i,0,8+5i,(1-$\sqrt{3}$)i,0.618i這幾個數(shù)中,純虛數(shù)的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖程序框圖中,若輸入k的值為11,則輸出A的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.對于定義在R上的函數(shù)f(x)滿足兩個條件:
①當x∈[0,1]時,f(0)=0,f(1)=e,f(x)-f′(x)<0;
②ex-1f(x+1)=ex+1f(x-1),e1-xf(x+1)=ex+1f(1-x),
若函數(shù)y=f(x)-kxex零點有2016個,則實數(shù)k的取值范圍為( 。
A.($\frac{1}{2017}$,$\frac{1}{2015}$)B.($\frac{1}{2016}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2015}$,-$\frac{1}{2017}$)∪($\frac{1}{2017}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,$\frac{1}{2016}$)∪($\frac{1}{2016}$,$\frac{1}{2014}$)

查看答案和解析>>

同步練習冊答案