橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過(guò)左焦點(diǎn)F1的弦AB的端點(diǎn)為A(m,1)、B(n,-3),△ABF2的內(nèi)切圓半徑為1,則橢圓離心率為
 
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用△ABF2的內(nèi)切圓半徑為1,可得S△ABF2=
1
2
•4a•1=2a,利用左焦點(diǎn)F1的弦AB的端點(diǎn)為A(m,1)、B(n,-3),可得S△ABF2=
1
2
•2c•(1+3)=4c,從而可得2a=4c,即可求出橢圓離心率.
解答: 解:由題意,∵△ABF2的內(nèi)切圓半徑為1,
∴S△ABF2=
1
2
•4a•1=2a,
∵左焦點(diǎn)F1的弦AB的端點(diǎn)為A(m,1)、B(n,-3),
∴S△ABF2=
1
2
•2c•(1+3)=4c,
∴2a=4c,
∴橢圓的離心率e=
c
a
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題重點(diǎn)考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+1(a>0).
(1)當(dāng)a=1且x>1時(shí),證明:f(x)>3-
4
x+1

(2)若對(duì)?x∈(1,e),f(x)>x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=
1
2
時(shí),證明:
n+1
i=2
f(i)>2(n+1-
n+1
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知橢圓
x2
36
+
y2
9
=1
的一條弦的中點(diǎn)為P(4,2),求此弦所在直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(x,y).若x∈[-1,2],y∈[-1,1],則向量
a
,
b
的夾角是鈍角的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
滿足|
a
|=1,|
b
|=
3
,且(3
a
-2
b
)⊥
a
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于以下結(jié)論:
①若y=f(x)是奇函數(shù),則f(0)=0;
②已知p:事件A、B是對(duì)立事件,q:事件A、B是互斥事件,則p是q的必要但不充分條件;
③若
a
=(1,2),
b
=(0,-1)
,則
b
a
上的投影為-
2
5
5
;
ln5
5
ln3
3
1
e
(e為自然數(shù));
⑤函數(shù)y=log2
x+2
x
的圖象可以由函數(shù)y=log2x圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位而得.
其中,正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在[0,2]上任取兩數(shù)a,b,則函數(shù)f(x)=x2+
a
x+b有零點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次選秀比賽中,五位評(píng)委為一位表演者打分,若去掉一個(gè)最低分后平均分為90分,去掉一個(gè)最高分后平均分為86分.那么最高分比最低分高
 
分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),且2
OA
+
OB
+
OC
=0
,則△ABO與△ABC的面積之比為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

同步練習(xí)冊(cè)答案