已知半徑為1的定圓⊙P的圓心P到定直線的距離為2,Q是上一動點,⊙Q與⊙P相外切,⊙Q交于M、N兩點,對于任意直徑MN,平面上恒有一定點A,使得∠MAN為定值。求∠MAN的度數(shù)。

60°


解析:

為x軸,點P到的垂線為y軸建立如圖所示的直角坐標(biāo)系,設(shè)Q的坐標(biāo)為(x, 0),點A(k, λ),⊙Q的半徑為r,則:M(x-r, 0), N(x+r, 0), P(2, 0), PQ==1+r。所以x=±, ∴tan∠MAN=

,令2m=h2+k2-3,tan∠MAN=,所以m+rk=nhr,∴m+(1-nh)r=,兩邊平方,得:m2+2m(1-nh)r-(1-nh)2r2=k2r2+2k2r-3k2,因為對于任意實數(shù)r≥1,上式恒成立,所以,由(1)(2)式,得m=0, k=0,由(3)式,得n=。由2m=h2+k2-3得h=±,所以tan∠MAN==h=±。所以∠MAN=60°或120°(舍)(當(dāng)Q(0, 0), r=1時∠MAN=60°),故∠MAN=60°。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為1的動圓與定圓(x-5)2+(y+6)2=9相切,則動圓圓心的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高一下學(xué)期第一次階段考試理科數(shù)學(xué) 題型:選擇題

已知半徑為1的動圓與定圓相切,則動圓圓心的軌跡方程是(   )

A.

B.  或

C.

D. 或

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省澄邁中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是( )
A.(x-5)2+(y+7)2=25
B.(x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C.(x-5)2+(y+7)2=9
D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

同步練習(xí)冊答案